READING A TOPOGRAPHIC MAP (1)

1. Elevations on Earth's surface are measured away from sea-level. Sea level has an elevation of 0.
2. Contour Interval (C.1.) is defined as the difference in elevation between 2 consecutive contour lines. In the example below the contour interval (C.1.) is 50 ft . The contour interval (C.1.) for any specific topographic map remains the same.

3. a) If a point on a topographic map lies on a specific contour line, that point will have the same elevation as the contour line. For example, point C has an elevation of 50 ft , while point D will have an elevation of 200 ft .
b) If a point lies between 2 contour lines, then it must have an elevation between the values of the 2 contour lines (use your best judgment/estimate). For example the elevation of point E is approximately 125 ft , since it is located between the contour lines of 100 ft and 150 ft (roughly in the middle between the 2 contour lines).
4. Concentric contour lines (contour lines that share the same "center") indicate a mountain or a hill.. Notice on the map above (MAP 1) how the contour lines wrap one around the other, as well as that the elevation increases from the outer contour lines to the inner contour lines.
Do you see the four hills/mountains indicated by MAP 2 below?

Topographic Maps Worksheet

Use the topographic map to answer questions 1-4.

1. If the first layer of your model is sea level, what elevation is each of the following points?
(Contour Interval $=10 \mathrm{ft}$.)
A
B \qquad
C \qquad
D \qquad E \qquad
F \qquad
2. Which is the steepest slope on the hill? (north, south, east, west?) How do you know?
\qquad
\qquad
\qquad
\qquad
\qquad
3. What is the difference in elevation between the second and fourth layers of the map?
\qquad
\qquad
\qquad
\qquad
\qquad
4. If you were to build a house on this hill, where is the flattest part of the landform? Draw a house in this area on the topographic map.
