wraouctiox ioneneral Organic and Biochemistry 10e

BETTELHEIM BROWN CAMPBELL FARRELL TORRES

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by ISBN\#, author, title, or keyword for materials in your areas of interest.

Introduction to General, Organic, and Biochemistry, Tenth Edition Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar J. Torres

Publisher: Mary Finch
Developmental Editor: Sandra Kiselica
Assistant Editor: Elizabeth Woods
Editorial Assistant: Krista Mastroianni
Senior Media Editor: Lisa Weber
Media Editor: Stephanie VanCamp
Marketing Manager: Nicole Hamm
Marketing Assistant: Julie Stefani
Marketing Communications Manager: Linda Yip Content Project Manager: Teresa L. Trego

Design Director: Rob Hugel
Art Director: Maria Epes
Manufacturing Planner: Karen Hunt Rights Acquisitions Specialist: Dean Dauphinais Production Service: PreMediaGlobal

Text Designer: Bill Reuter Design
Photo Researcher: Chris Altof/Bill Smith Group Text Researcher: Sue C. Howard

Copy Editor: PreMediaGlobal
Illustrator: PreMediaGlobal, 2064 Design
OWL Producers: Stephen Battisti, Cindy Stein, David Hart (Center for Educational Software Development, University of Massachusetts, Amherst)

Cover Designer: Bill Reuter Design
Cover Images: Main image ©Dave Reede/Getty Images, from left to right ©Ottmar Diez/Getty Images, ©Chris Hill/Getty Images, ©David Norton Photography/Alamy, © PhotoResearchers, Inc.
Compositor: PreMediaGlobal

© 2013, 2010 Brooks/Cole, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer \& Sales Support, 1-800-354-9706
For permission to use material from this text or product, submit all requests online at cengage.com/permissions

Further permissions questions can be emailed to permissionrequest@cengage.com

Library of Congress Control Number: 2011934948
ISBN-13: 978-1-133-10508-4
ISBN-10: 1-133-10508-4

Brooks/Cole

20 Davis Drive
Belmont, CA 94002-3098
USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
www.cengage.com/global

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

For your course and learning solutions, visit academic.cengage.com
Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com

Matter, Energy, and Measurement

A woman climbing a frozen waterfall in British Columbia.

1.1 Why Do We Call Chemistry the Study of Matter?

The world around us is made of chemicals. Our food, our clothing, the buildings in which we live are all made of chemicals. Our bodies are made of chemicals, too. To understand the human body, its diseases, and its cures, we must know all we can about those chemicals. There was a time-only a few hundred years ago-when physicians were powerless to treat many diseases. Cancer, tuberculosis, smallpox, typhus, plague, and many other sicknesses struck people seemingly at random. Doctors, who had no idea what caused any of these diseases, could do little or nothing about them. Doctors treated them with magic as well as by such measures as bleeding, laxatives, hot plasters, and pills made from powdered staghorn, saffron, or gold. None of these treatments was effective, and the doctors, because they came into direct contact with highly contagious diseases, died at a much higher rate than the general public.

Key Questions

1.1 Why Do We Call Chemistry the Study of Matter?
1.2 What Is the Scientific Method?
1.3 How Do Scientists Report Numbers?

How To . . . Determine the Number of Significant Figures in a Number
1.4 How Do We Make Measurements?
1.5 What Is a Handy Way to Convert from One Unit to Another?

How To ... Do Unit Conversions by the FactorLabel Method
1.6 What Are the States of Matter?
1.7 What Are Density and Specific Gravity?
1.8 How Do We Describe the Various Forms of Energy?
1.9 How Do We Describe Heat and the Ways in Which It Is Transferred?

©WL

Sign in to OWL at www.cengage.com/owl to view tutorials and simulations, develop problem-solving skills, and complete online homework assigned by your professor.

Medical practice over time. (a) A woman being bled by a leech on her left forearm; a bottle of leeches is on the table. From a 1639 woodcut. (b) Modern surgery in a well-equipped operating room.

(a)

(b)

Medicine has made great strides since those times. We live much longer, and many once-feared diseases have been essentially eliminated or are curable. Smallpox has been eradicated, and polio, typhus, bubonic plague, diphtheria, and other diseases that once killed millions no longer pose a serious problem, at least not in the developed countries.

How has this medical progress come about? The answer is that diseases could not be cured until they were understood, and this understanding has emerged through greater knowledge of how the body functions. It is progress in our understanding of the principles of biology, chemistry, and physics that has led to these advances in medicine. Because so much of modern medicine depends on chemistry, it is essential that students who intend to enter the health professions have some understanding of basic chemistry. This book was written to help you achieve that goal. Even if you choose a different profession, you will find that the chemistry you learn in this course will greatly enrich your life.

The universe consists of matter, energy, and empty space. Matter is anything that has mass and takes up space. Chemistry is the science that deals with matter: the structure and properties of matter and the transformations from one form of matter to another. We will discuss energy in Section 1.8.

It has long been known that matter can change, or be made to change, from one form to another. In a chemical change, more commonly called a chemical reaction, substances are used up (disappear) and others are formed to take their places. An example is the burning of the mixture of hydrocarbons usually called "bottled gas." In this mixture of hydrocarbons, the main component is propane. When this chemical change takes place, propane and oxygen from the air are converted to carbon dioxide and water. Figure 1.1 shows another chemical change.

Matter also undergoes other kinds of changes, called physical changes. These changes differ from chemical reactions in that the identities of the substances do not change. Most physical changes involve changes of statefor example, the melting of solids and the boiling of liquids. Water remains water whether it is in the liquid state or in the form of ice or steam. The conversion from one state to another is a physical-not a chemical-change. Another important type of physical change involves making or separating mixtures. Dissolving sugar in water is a physical change.

When we talk about the chemical properties of a substance, we mean the chemical reactions that it undergoes. Physical properties are all properties that do not involve chemical reactions. For example, density, color, melting point, and physical state (liquid, solid, gas) are all physical properties.

(c)

FIGURE 1.1 A chemical reaction. (a) Bromine, an orange-brown liquid, and aluminum metal. (b) These two substances react so vigorously that the aluminum becomes molten and glows white hot at the bottom of the beaker. The yellow vapor consists of vaporized bromine and some of the product of the reaction, white aluminum bromide. (c) Once the reaction is complete, the beaker is coated with aluminum bromide and the products of its reaction with atmospheric moisture. (Note: This reaction is dangerous! Under no circumstances should it be done except under properly supervised conditions.)

1.2 What Is the Scientific Method?

Scientists learn by using a tool called the scientific method. The heart of the scientific method is the testing of theories. It was not always so, however. Before about 1600, philosophers often believed statements just because they sounded right. For example, the great philosopher Aristotle (384-322 BCE) believed that if you took the gold out of a mine it would grow back. He believed this idea because it fitted in with a more general picture that he had about the workings of nature. In ancient times, most thinkers behaved in this way. If a statement sounded right, they believed it without testing it.

About 1600 CE, the scientific method came into use. Let us look at an example to see how the scientific method operates. The Greek physician Galen (200-130 BCE) recognized that the blood on the left side of the heart somehow gets to the right side. This is a fact. A fact is a statement based on direct experience. It is a consistent and reproducible observation. Having observed this fact, Galen then proposed a hypothesis to explain it. A hypothesis is a statement that is proposed, without actual proof, to explain the facts and their relationship. Because Galen could not actually see how the blood got from the left side to the right side of the heart, he came up with the hypothesis that tiny holes must be present in the muscular wall that separates the two halves.

Up to this point, a modern scientist and an ancient philosopher would behave the same way. Each would offer a hypothesis to explain the facts. From this point on, however, their methods would differ. To Galen, his explanation sounded right and that was enough to make him believe it, even though he couldn't see any holes. His hypothesis was, in fact, believed by virtually all physicians for more than 1000 years. When we use the scientific method, however, we do not believe a hypothesis just because it sounds right. We test it, using the most rigorous testing we can imagine.

William Harvey (1578-1657) tested Galen's hypothesis by dissecting human and animal hearts and blood vessels. He discovered that one-way

Galen did not do experiments to test his hypothesis.

A PET scanner is an example of how modern scientists do experiments to test a hypothesis.

Hypothesis A statement that is proposed, without actual proof, to explain a set of facts and their relationship

Theory The formulation of an apparent relationship among certain observed phenomena, which has been verified. A theory explains many interrelated facts and can be used to make predictions about natural phenomena. Examples are Newton's theory of gravitation and the kinetic molecular theory of gases, which we will encounter in Section 6.6. This type of theory is also subject to testing and will be discarded or modified if it is contradicted by new facts.
valves separate the upper chambers of the heart from the lower chambers. He also discovered that the heart is a pump that, by contracting and expanding, pushes the blood out. Harvey's teacher, Fabricius (1537-1619), had previously observed that one-way valves exist in the veins, so that blood in the veins can travel only toward the heart and not the other way.

Harvey put these facts together to come up with a new hypothesis: Blood is pumped by the heart and circulates throughout the body. This was a better hypothesis than Galen's because it fitted the facts more closely. Even so, it was still a hypothesis and, according to the scientific method, had to be tested further. One important test took place in 1661, four years after Harvey died. Harvey had predicted that because there had to be a way for the blood to get from the arteries to the veins, tiny blood vessels must connect them. In 1661, the Italian anatomist Malpighi (1628-1694), using the newly invented microscope, found these tiny vessels, which are now called capillaries.

Malpighi's discovery supported the blood circulation hypothesis by fulfilling Harvey's prediction. When a hypothesis passes the tests, we have more confidence in it and call it a theory. A theory is the formulation of an apparent relationship among certain observed phenomena, which has been verified to some extent. In this sense, a theory is the same as a hypothesis except that we have a stronger belief in it because more evidence supports it. No matter how much confidence we have in a theory, however, if we discover new facts that conflict with it or if it does not pass newly devised tests, the theory must be altered or rejected. In the history of science, many firmly established theories have eventually been thrown out because they could not pass new tests.

One of the most important ways to test a hypothesis is by a controlled experiment. It is not enough to say that making a change causes an effect, we must also see that the lack of that change does not produce the observed effect. If, for example, a researcher proposes that adding a vitamin mixture to the diet of children improves growth, the first question is whether children in a control group who do not receive the vitamin mixture do not grow as quickly. Comparison of an experiment with a control is essential to the scientific method.

The scientific method is thus very simple. We don't accept a hypothesis or a theory just because it sounds right. We devise tests, and only if the hypothesis or theory passes the tests do we accept it. The enormous progress made since 1600 in chemistry, biology, and the other sciences is a testimony to the value of the scientific method.

You may get the impression from the preceding discussion that science progresses in one direction: facts first, hypothesis second, theory last. Real life is not so simple, however. Hypotheses and theories call the attention of scientists to discover new facts. An example of this scenario is the discovery of the element germanium. In 1871, Mendeleev's Periodic Tablea graphic description of elements organized by properties-predicted the existence of a new element whose properties would be similar to those of silicon. Mendeleev called this element eka-silicon. In 1886, it was discovered in Germany (hence the name), and its properties were truly similar to those predicted by theory.

On the other hand, many scientific discoveries result from serendipity, or chance observation. An example of serendipity occurred in 1926, when James Sumner of Cornell University left an enzyme preparation of jack bean urease in a refrigerator over the weekend. Upon his return, he found that his solution contained crystals that turned out to be a protein. This chance discovery led to the hypothesis that all enzymes are proteins. Of course, serendipity is not enough to move science forward. Scientists must have the creativity and insight to recognize the significance of their observations. Sumner fought for more than 15 years for his hypothesis to gain
acceptance because people believed that only small molecules can form crystals. Eventually his view won out, and he was awarded a Nobel Prize in chemistry in 1946.

1.3 How Do Scientists Report Numbers?

Scientists often have to deal with numbers that are very large or very small. For example, an ordinary copper penny (dating from before 1982, when pennies in the United States were still made of copper) contains approximately

$$
29,500,000,000,000,000,000,000 \text { atoms of copper }
$$

and a single copper atom weighs
0.00000000000000000000000023 pound
which is equal to

0.000000000000000000000104 gram

Many years ago, an easy way to handle such large and small numbers was devised. This method, which is called exponential notation, is based on powers of 10 . In exponential notation, the number of copper atoms in a penny is written

$$
2.95 \times 10^{22}
$$

and the weight of a single copper atom is written

$$
2.3 \times 10^{-25} \text { pound }
$$

which is equal to

$$
1.04 \times 10^{-22} \text { gram }
$$

The origin of this shorthand form can be seen in the following examples:

$$
\begin{gathered}
100=1 \times 10 \times 10=1 \times 10^{2} \\
1000=1 \times 10 \times 10 \times 10=1 \times 10^{3}
\end{gathered}
$$

What we have just said in the form of an equation is " 100 is a one with two zeros after the one, and 1000 is a one with three zeros after the one." We can also write

$$
\begin{gathered}
1 / 100=1 / 10 \times 1 / 10=1 \times 10^{-2} \\
1 / 1000=1 / 10 \times 1 / 10 \times 1 / 10=1 \times 10^{-3}
\end{gathered}
$$

where negative exponents denote numbers less than 1 . The exponent in a very large or very small number lets us keep track of the number of zeros. That number can become unwieldy with very large or very small quantities, and it is easy to lose track of a zero. Exponential notation helps us deal with this possible source of determinant error.

When it comes to measurements, not all the numbers you can generate in your calculator or computer are of equal importance. Only the number of digits that are known with certainty are significant. Suppose that you measured the weight of an object as 3.4 g on a balance that you can read to the nearest 0.1 g . You can report the weight as 3.4 g but not as 3.40 or 3.400 g because you do not know the added zeros with certainty. This becomes even more important when you do calculations using a calculator. For example, you might measure a cube with a ruler and find that each side is 2.9 cm . If you are asked to calculate the volume, you multiply $2.9 \mathrm{~cm} \times 2.9 \mathrm{~cm} \times 2.9 \mathrm{~cm}$. The calculator will then give you an answer that is $24.389 \mathrm{~cm}^{3}$. However, your initial measurements were good to only one decimal place, so your final

Photos showing different orders of magnitude.

1. Group picnic in stadium parking lot (~ 10 meters)
2. Football field (~ 100 meters)
3. Vicinity of stadium (~ 1000 meters).
answer cannot be good to three decimal places. As a scientist, it is important to report data that have the correct number of significant figures. A detailed account of using significant figures is presented in Appendix II. The following How To box describes the way to determine the number of significant figures in a number. You will find boxes like this at places in the text where detailed explanations of concepts are useful.

How To...

Determine the Number of Significant

Figures in a Number

1. Nonzero digits are always significant.

For example, 233.1 m has four significant figures; 2.3 g has two significant figures.
2. Zeros at the beginning of a number are never significant. For example, 0.0055 L has two significant figures; 0.3456 g has four significant figures.
3. Zeros between nonzero digits are always significant.

For example, 2.045 kcal has four significant figures; 8.0506 g has five significant figures.
4. Zeros at the end of a number that contains a decimal point are always significant.
For example, 3.00 L has three significant figures; 0.0450 mm has three significant figures.
5. Zeros at the end of a number that contains no decimal point may or may not be significant.

We cannot tell whether they are significant without knowing something about the number. This is the ambiguous case. If you know that a certain small business made a profit of $\$ 36,000$ last year, you can be sure that the 3 and 6 are significant, but what about the rest? The profit might have been $\$ 36,126$ or $\$ 35,786.53$, or maybe even exactly $\$ 36,000$. We just don't know because it is customary to round off such numbers. On the other hand, if the profit were reported as $\$ 36,000.00$, then all seven digits would be significant.

In science, to get around the ambiguous case, we use exponential notation. Suppose a measurement comes out to be 2500 g . If we made the measurement, then we know whether the two zeros are significant, but we need to tell others. If these digits are not significant, we write our number as 2.5×10^{3}. If one zero is significant, we write 2.50×10^{3}. If both zeros are significant, we write 2.500×10^{3}. Because we now have a decimal point, all the digits shown are significant. We are going to use decimal points throughout this text to indicate the number of significant figures.

Example 1.1 Exponential Notation and Significant Figures

Multiply:
(a) $\left(4.73 \times 10^{5}\right)\left(1.37 \times 10^{2}\right)$
(b) $\left(2.7 \times 10^{-4}\right)\left(5.9 \times 10^{8}\right)$

Divide:
(c) $\frac{7.08 \times 10^{-8}}{300}$
(d) $\frac{5.8 \times 10^{-6}}{6.6 \times 10^{-8}}$
(e) $\frac{7.05 \times 10^{-3}}{4.51 \times 10^{5}}$

Strategy and Solution

The way to do calculations of this sort is to use a button on scientific calculators that automatically uses exponential notation. The button is usually labeled "E." (On some calculators, it is labeled "EE." In some cases, it is accessed by using the second function key.)
(a) Enter 4.73E5, press the multiplication key, enter 1.37 E 2 , and press the "=" key. The answer is 6.48×10^{7}. The calculator will display this number as 6.48E7. This answer makes sense. We add exponents when we multiply, and the sum of these two exponents is correct $(5+2=7)$. We also multiply the numbers, 4.73×1.37. This is approximately $4 \times 1.5=6$, so 6.48 is also reasonable.
(b) Here we have to deal with a negative exponent, so we use the "+/-" key. Enter $2.7 \mathrm{E}+/-4$, press the multiplication key, enter 5.9 E 8 , and press the "=" key. The calculator will display the answer as 1.593 E 5. To have the correct number of significant figures, we should report our answer as 1.6 E 5 . This answer makes sense because 2.7 is a little less than 3 and 5.9 is a little less than 6 , so we predict a number slightly less than 18 ; also, the algebraic sum of the exponents $(-4+8)$ is equal to 4 . This gives 16×10^{4}. In exponential notation, we normally prefer to report numbers between 1 and 10, so we rewrite our answer as 1.6×10^{5}. We made the first number 10 times smaller, so we increased the exponent by 1 to reflect that change.
(c) Enter $7.08 \mathrm{E}+/-8$, press the division key, enter 300 ., and press the "=" key. The answer is 2.36×10^{-10}. The calculator will display this number as $2.36 \mathrm{E}-10$. We subtract exponents when we divide, and we can also write 300 . as 3.00×10^{2}.
(d) Enter $5.8 \mathrm{E}+/-6$, press the division key, enter $6.6 \mathrm{E}+/-8$, and press the "=" key. The calculator will display the answer as 87.878787878788 . We report this answer as 88 to get the right number of significant figures. This answer makes sense. When we divide 5.8 by 6.6 , we get a number slightly less than 1 . When we subtract the exponents algebraically $(-6-[-8])$, we get 2 . This means that the answer is slightly less than 1×10^{2}, or slightly less than 100 .
(e) Enter $7.05 \mathrm{E}+/-3$, press the division key, enter 4.51 E 5 , and press the "=" key. The calculator displays the answer as $1.5632 \mathrm{E}-8$, which, to the correct number of significant figures, is 1.56×10^{-8}. The algebraic subtraction of exponents is $-3-5=-8$.

Problem 1.1

Multiply:
(a) $\left(6.49 \times 10^{7}\right)\left(7.22 \times 10^{-3}\right) \quad$ (b) $\left(3.4 \times 10^{-5}\right)\left(8.2 \times 10^{-11}\right)$

Divide:
(a) $\frac{6.02 \times 10^{23}}{3.10 \times 10^{5}}$
(b) $\frac{3.14}{2.30 \times 10^{-5}}$

1.4 How Do We Make Measurements?

In our daily lives, we are constantly making measurements. We measure ingredients for recipes, driving distances, gallons of gasoline, weights of fruits and vegetables, and the timing of TV programs. Doctors and nurses measure pulse rates, blood pressures, temperatures, and drug dosages. Chemistry, like other sciences, is based on measurements.

The label on this bottle of water shows the metric size (one liter) and the equivalent in quarts.

Metric system A system of units of measurement in which the divisions to subunits are made by a power of 10

Table 1.1 Base Units in the Metric System

Length	meter (m)
Volume	liter (L)
Mass	gram (g)
Time	second (s)
Temperature	Kelvin (K)
Energy	joule (J)
Amount of	mole (mol)
\quad substance	

FIGURE 1.2 Road sign in Massachusetts showing metric equivalents of mileage.

A measurement consists of two parts: a number and a unit. A number without a unit is usually meaningless. If you were told that a person's weight is 57 , the information would be of very little use. Is it 57 pounds, which would indicate that the person is very likely a child or a midget, or 57 kilograms, which is the weight of an average woman or a small man? Or is it perhaps some other unit? Because so many units exist, a number by itself is not enough; the unit must also be stated.

In the United States, most measurements are made with the English system of units: pounds, miles, gallons, and so on. In most other parts of the world, however, few people could tell you what a pound or an inch is. Most countries use the metric system, a system that originated in France about 1800 and that has since spread throughout the world. Even in the United States, metric measurements are slowly being introduced (Figure 1.2). For example, many soft drinks and most alcoholic beverages now come in metric sizes. Scientists in the United States have been using metric units all along.

Around 1960, international scientific organizations adopted another system, called the International System of Units (abbreviated SI). The SI is based on the metric system and uses some of the metric units. The main difference is that the SI is more restrictive: It discourages the use of certain metric units and favors others. Although the SI has advantages over the older metric system, it also has significant disadvantages. For this reason, U.S. chemists have been very slow to adopt it. At this time, approximately 40 years after its introduction, not many U.S. chemists use the entire SI, although some of its preferred units are gaining ground.

In this book, we will use the metric system (Table 1.1). Occasionally we will mention the preferred SI unit.

A. Length

The key to the metric system (and the SI) is that there is one base unit for each kind of measurement and that other units are related to the base unit only by powers of 10 . As an example, let us look at measurements of length. In the English system, we have the inch, the foot, the yard, and the mile (not to mention such older units as the league, furlong, ell, and rod). If you want to convert one unit to another unit, you must memorize or look up these conversion factors:

$$
\begin{aligned}
5280 \text { feet } & =1 \text { mile } \\
1760 \text { yards } & =1 \text { mile } \\
3 \text { feet } & =1 \text { yard } \\
12 \text { inches } & =1 \text { foot }
\end{aligned}
$$

Table 1.2 The Most Common Metric Prefixes

Prefix	Symbol	Value
giga	G	$10^{9}=1,000,000,000$ (one billion)
mega	M	$10^{6}=1,000,000$ (one million)
kilo	k	$10^{3}=1000$ (one thousand)
deci	d	$10^{-1}=0.1$ (one-tenth)
centi	c	$10^{-2}=0.01$ (one-hundredth)
milli	m	$10^{-3}=0.001$ (one-thousandth)
micro	μ	$10^{-6}=0.000001$ (one-millionth)
nano	n	$10^{-9}=0.000000001$ (one-billionth)
pico	p	$10^{-12}=0.000000000001$ (one-trillionth)

Exponential notation for quantities with multiple zeros is shown in parentheses.

All this is unnecessary in the metric system (and the SI). In both systems the base unit of length is the meter (m). To convert to larger or smaller units, we do not use arbitrary numbers like 12,3 , and 1760 , but only 10 , $100,1 / 100,1 / 10$, or other powers of 10 . This means that to convert from one metric or SI unit to another, we only have to move the decimal point. Furthermore, the other units are named by putting prefixes in front of "meter," and these prefixes are the same throughout the metric system and the SI. Table 1.2 lists the most important of these prefixes. If we put some of these prefixes in front of "meter," we have

$$
\begin{aligned}
1 \text { kilometer }(\mathrm{km}) & =1000 \text { meters }(\mathrm{m}) \\
1 \text { centimeter }(\mathrm{cm}) & =0.01 \text { meter } \\
1 \text { nanometer }(\mathrm{nm}) & =10^{-9} \text { meter }
\end{aligned}
$$

For people who have grown up using English units, it is helpful to have some idea of the size of metric units. Table 1.3 shows some conversion factors.

Conversion factors are defined. We can use them to have as many significant figures as needed without limit. This point will not be the case with measured numbers.

Some of these conversions are difficult enough that you will probably not remember them and must, therefore, look them up when you need them. Some are easier. For example, a meter is about the same as a yard. A kilogram is a little over two pounds. There are almost four liters in a gallon. These conversions may be important to you someday. For example, if you rent a car in Europe, the price of gas listed on the sign at the gas station will be in Euros per liter. When you realize that you are spending two dollars per liter and you know that there are almost four liters to a gallon, you will realize why so many people take the bus or a train instead.

B. Volume

Volume is space. The volume of a liquid, solid, or gas is the space occupied by that substance. The base unit of volume in the metric system is the liter (\mathbf{L}).

Hypodermic syringe. Note that the volumes are indicated in milliliters.

This unit is a little larger than a quart (Table 1.3). The only other common metric unit for volume is the milliliter (mL), which is equal to $10^{-3} \mathrm{~L}$.

$$
\begin{aligned}
1 \mathrm{~mL} & =0.001 \mathrm{~L}\left(1 \times 10^{-3} \mathrm{~L}\right) \\
\left(1 \times 10^{3} \mathrm{~mL}\right) 1000 \mathrm{~mL} & =1 \mathrm{~L}
\end{aligned}
$$

One milliliter is exactly equal to one cubic centimeter (cc or cm^{3}):

$$
1 \mathrm{~mL}=1 \mathrm{cc}
$$

Thus, there are $1000\left(1 \times 10^{3}\right)$ cc in 1 L .

C. Mass

Mass is the quantity of matter in an object. The base unit of mass in the metric system is the gram (g). As always in the metric system, larger and smaller units are indicated by prefixes. The ones in common use are

$$
\begin{aligned}
1 \text { kilogram }(\mathrm{kg}) & =1000 \mathrm{~g} \\
1 \text { milligram }(\mathrm{mg}) & =0.001 \mathrm{~g}
\end{aligned}
$$

The gram is a small unit; there are 453.6 g in one pound (Table 1.3).
We use a device called a balance to measure mass. Figure 1.3 shows two types of laboratory balances.

There is a fundamental difference between mass and weight. Mass is independent of location. The mass of a stone, for example, is the same whether we measure it at sea level, on top of a mountain, or in the depths of a mine. In contrast, weight is not independent of location. Weight is the force a mass experiences under the pull of gravity. This point was dramatically demonstrated when the astronauts walked on the surface of the Moon. The Moon, being a smaller body than the Earth, exerts a weaker gravitational pull. Consequently, even though the astronauts wore space suits and equipment that would be heavy on Earth, they felt lighter on the Moon and could execute great leaps and bounces during their walks.

Although mass and weight are different concepts, they are related to each other by the force of gravity. We frequently use the words interchangeably

FIGURE 1.3 Two laboratory balances for measuring mass.

Chemical Connections 1A

Drug Dosage and Body Mass

In many cases, drug dosages are prescribed on the basis of body mass. For example, the recommended dosage of a drug may be 3 mg of drug for each kilogram of body weight. In this case, a $50 \mathrm{~kg}(110 \mathrm{lb})$ woman would receive 150 mg and an 82 kg (180 lb) man would get 246 mg . This adjustment is especially important for children, because a dose suitable for an adult will generally be too much for a child, who has much less body mass. For this reason, manufacturers package and sell smaller doses of certain drugs, such as aspirin, for children.

Drug dosage may also vary with age. Occasionally, when an elderly patient has an impaired kidney or liver function, the clearance of a drug from the body is delayed, and the drug may stay in the body longer than is normal. This persistence can cause dizziness, vertigo, and migraine-like headaches, resulting in falls and broken bones. Such delayed clearance must be monitored and the drug dosage adjusted accordingly.

This package of Advil has a chart showing the proper doses for children of a given weight.

Test your knowledge with Problems 1.69 and 1.70.
because we weigh objects by comparing their masses to standard reference masses (weights) on a balance, and the gravitational pull is the same on the unknown object and on the standard masses. Because the force of gravity is essentially constant, mass is always directly proportional to weight.

D. Time

Time is the one quantity for which the units are the same in all systems: English, metric, and SI. The base unit is the second (s):

$$
\begin{aligned}
60 \mathrm{~s} & =1 \mathrm{~min} \\
60 \mathrm{~min} & =1 \mathrm{~h}
\end{aligned}
$$

E. Temperature

Most people in the United States are familiar with the Fahrenheit scale of temperature. The metric system uses the centigrade, or Celsius, scale. In this scale, the boiling point of water is set at $100^{\circ} \mathrm{C}$ and the freezing point at $0^{\circ} \mathrm{C}$. We can convert from one scale to the other by using the following formulas:

$$
\begin{aligned}
& { }^{\circ} \mathrm{F}=\frac{9}{5}{ }^{\circ} \mathrm{C}+32 \\
& { }^{\circ} \mathrm{C}=\frac{5}{9}\left({ }^{\circ} \mathrm{F}-32\right)
\end{aligned}
$$

The 32 in these equations is a defined number and is, therefore, treated as if it had an infinite number of zeros following the decimal point. (See Appendix II.)

Example 1.2 Temperature Conversion

Normal body temperature is $98.6^{\circ} \mathrm{F}$. Convert this temperature to Celsius.

Strategy

We use the conversion formula that takes into account the fact that the freezing point of water, $0^{\circ} \mathrm{C}$ is equal to $32^{\circ} \mathrm{F}$.

Solution

$$
{ }^{\circ} \mathrm{C}=\frac{5}{9}(98.6-32)=\frac{5}{9}(66.6)=37.0^{\circ} \mathrm{C}
$$

Problem 1.2

Convert:
(a) $64.0^{\circ} \mathrm{C}$ to Fahrenheit
(b) $47^{\circ} \mathrm{F}$ to Celsius

Fahrenheit Celsius Kelvin

FIGURE 1.4 Three temperature scales.

Factor-label method A procedure in which the equations are set up so that all the unwanted units cancel and only the desired units remain

Figure 1.4 shows the relationship between the Fahrenheit and Celsius scales.

A third temperature scale is the Kelvin (K) scale, also called the absolute scale. The size of a Kelvin degree is the same as that of a Celsius degree; the only difference is the zero point. The temperature $-273^{\circ} \mathrm{C}$ is taken as the zero point on the Kelvin scale. This makes conversions between Kelvin and Celsius very easy. To go from Celsius to Kelvin, just add 273; to go from Kelvin to Celsius, subtract 273:

$$
\begin{aligned}
\mathrm{K} & ={ }^{\circ} \mathrm{C}+273 \\
{ }^{\circ} \mathrm{C} & =\mathrm{K}-273
\end{aligned}
$$

Figure 1.4 also shows the relationship between the Kelvin and Celsius scales. Note that we don't use the degree symbol in the Kelvin scale: $100^{\circ} \mathrm{C}$ equals 373 K , not $373^{\circ} \mathrm{K}$.

Why was $-273^{\circ} \mathrm{C}$ chosen as the zero point on the Kelvin scale? The reason is that $-273^{\circ} \mathrm{C}$, or 0 K , is the lowest possible temperature. Because of this, 0 K is called absolute zero. Temperature reflects how fast molecules move. The more slowly they move, the colder it gets. At absolute zero, molecules stop moving altogether. Therefore, the temperature cannot get any lower. For some purposes, it is convenient to have a scale that begins at the lowest possible temperature; the Kelvin scale fulfills this need. The Kelvin is the SI unit.

It is very important to have a "gut feeling" about the relative sizes of the units in the metric system. Often, while doing calculations, the only thing that might offer a clue that you have made an error is your understanding of the sizes of the units. For example, if you are calculating the amount of a chemical that is dissolved in water and you come up with an answer of $254 \mathrm{~kg} / \mathrm{mL}$, does your answer make sense? If you have no intuitive feeling about the size of a kilogram or a milliliter, you will not know. If you realize that a milliliter is about the volume of a thimble and that a standard bag of sugar might weigh 2 kg , then you will realize that there is no way to pack 254 kg into a thimble of water, and you will know that you made a mistake.

1.5 What Is a Handy Way to Convert from One Unit to Another?

We frequently need to convert a measurement from one unit to another. The best and most foolproof way to do this is the factor-label method. In this
method, we follow the rule that when multiplying numbers, we also multiply units and when dividing numbers, we also divide units.

For conversions between one unit and another, it is always possible to set up two fractions, called conversion factors. Suppose we wish to convert the weight of an object from 381 grams to pounds. We are converting the units, but we are not changing the object itself. We want a ratio that reflects the change in units. In Table 1.3, we see that there are 453.6 grams in 1 pound. That is, the amount of matter in 453.6 grams is the same as the amount in 1 pound. In that sense, it is a one-to-one ratio, even though the units are not numerically the same. The conversion factors between grams and pounds therefore are

$$
\frac{1 \mathrm{lb}}{453.6 \mathrm{~g}} \text { and } \frac{453.6 \mathrm{~g}}{1 \mathrm{lb}}
$$

To convert 381 grams to pounds, we must multiply by the proper conversion factor-but which one? Let us try both and see what happens.

First, let us multiply by $1 \mathrm{lb} / 453.6 \mathrm{~g}$:

$$
381 \mathrm{~g} \times \frac{1 \mathrm{lb}}{453.6 \mathrm{~g}}=0.840 \mathrm{lb}
$$

Following the procedure of multiplying and dividing units when we multiply and divide numbers, we find that dividing grams by grams cancels out the grams. We are left with pounds, which is the answer we want. Thus, $1 \mathrm{lb} / 453.6 \mathrm{~g}$ is the correct conversion factor because it converts grams to pounds.

Suppose we had done it the other way, multiplying by $453.6 \mathrm{~g} / 1 \mathrm{lb}$:

$$
381 \mathrm{~g} \times \frac{453.6 \mathrm{~g}}{1 \mathrm{lb}}=173,000 \frac{\mathrm{~g}^{2}}{\mathrm{lb}}\left(1.73 \times 10^{5} \frac{\mathrm{~g}^{2}}{\mathrm{lb}}\right)
$$

When we multiply grams by grams, we get g^{2} (grams squared). Dividing by pounds gives $\mathrm{g}^{2} / \mathrm{lb}$. This is not the unit we want, so we used the incorrect conversion factor.

How To...

Do Unit Conversions by the Factor-Label Method

One of the most useful ways of approaching conversions is to ask three questions:

- What information am I given? This is the starting point.
- What do I want to know? This is the answer that you want to find.
- What is the connection between the first two? This is the conversion factor. Of course, more than one conversion factor may be needed for some problems.
Let's look at how to apply these principles to a conversion from pounds to kilograms. Suppose we want to know the weight in kilograms of a woman who weighs 125 lb . We see in Table 1.3 that there are 2.205 lb in 1 kg . Note that we are starting out with pounds and we want an answer in kilograms.

$$
125 \ngtr>\frac{1 \mathrm{~kg}}{2.205 \mathrm{lb}}=56.7 \mathrm{~kg}
$$

- The mass in pounds is the starting point. We were given that information.

Conversion factor A ratio of two different units

In these conversions, we are dealing with measured numbers. Ambiguity can arise about the number of significant figures. The number 173,000 does not have six significant figures. We write 1.73×10^{5} to show that it has three significant figures. We will use decimal points throughout this book to indicate significant figures in numbers with trailing zeros.

- We wanted to know the mass in kilograms. That was the desired answer, and we found the number of kilograms.
- The connection between the two is the conversion factor in which the unit of the desired answer is in the numerator of the fraction, rather than the denominator. It is not simply a mechanical procedure to set up the equation so that units cancel; it is a first step to understanding the underlying reasoning behind the factor-label method. If you set up the equation to give the desired unit as the answer, you have made the connection properly.

If you apply this kind of reasoning, you can always pick the right conversion factor. Given the choice between

$$
\frac{2.205 \mathrm{lb}}{1 \mathrm{~kg}} \text { and } \frac{1 \mathrm{~kg}}{2.205 \mathrm{lb}}
$$

you know that the second conversion factor will give an answer in kilograms, so you use it. When you check the answer, you see that it is reasonable. You expect a number that is about one half of 125 , which is 62.5. The actual answer, 56.7 , is close to that value. The number of pounds and the number of kilograms are not the same, but they represent the same mass. That fact makes the use of conversion factors logically valid; the factor-label method uses the connection to obtain a numerical answer.

The advantage of the factor-label method is that it lets us know when we have made an incorrect calculation. If the units of the answer are not the ones we are looking for, the calculation must be wrong. Incidentally, this principle works not only in unit conversions but in all problems where we make calculations using measured numbers. Keeping track of units is a sure-fire way of doing conversions. It is impossible to overemphasize the importance of this way of checking on calculations.

The factor-label method gives the correct mathematical solution for a problem. However, it is a mechanical technique and does not require you to think through the problem. Thus, it may not provide a deeper understanding. For this reason and also to check your answer (because it is easy to make mistakes in arithmetic-for example, by punching the wrong numbers into a calculator), you should always ask yourself if the answer you have obtained is reasonable. For example, the question might ask the mass of a single oxygen atom. If your answer comes out $8.5 \times 10^{6} \mathrm{~g}$, it is not reasonable. A single atom cannot weigh more than you do! In such a case, you have obviously made a mistake and should take another look to see where you went wrong. Of course, everyone makes mistakes at times, but if you check, you can at least determine whether your answer is reasonable. If it is not, you will immediately know that you have made a mistake and can then correct it.

Checking whether an answer is reasonable gives you a deeper understanding of the problem because it forces you to think through the relationship between the question and the answer. The concepts and the mathematical relationships in these problems go hand in hand. Mastery of the mathematical skills makes the concepts clearer, and insight into the concepts suggests ways to approach the mathematics. We will now give a few examples of unit conversions and then test the answers to see whether they are reasonable. To save space, we will practice this technique mostly in this chapter, but you should use a similar approach in all later chapters.

In unit conversion problems, you should always check two things. First, the numeric factor by which you multiply tells you whether the answer will be larger or smaller than the number being converted. Second, the factor tells you how much greater or smaller your answer should be when compared to your starting number. For example, if 100 kg is converted to pounds and there are 2.205 lb in 1 kg , then an answer of about 200 is reasonablebut an answer of 0.2 or $2000\left(2.00 \times 10^{3}\right)$ is not.

This is a good time to recall Thomas Edison's definition of genius: 99% perspiration and 1% inspiration.

UWL Interactive Example 1.3 Unit Conversion: Volume

The label on a container of olive oil says 1.844 gal. How many milliliters does the container hold?

Strategy

Here we use two conversion factors, rather than a single one. We still need to keep track of units.

Solution

Table 1.3 shows no factor for converting gallons to milliliters, but it does show that $1 \mathrm{gal}=3.785 \mathrm{~L}$. Because we know that $1000 \mathrm{~mL}=1 \mathrm{~L}$, we can solve this problem by multiplying by two conversion factors, making certain that all units cancel except milliliters:

$$
1.844 \mathrm{gat} \times \frac{3.785 \mathrm{~L}}{1 \mathrm{gat}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=6980 \mathrm{~mL}
$$

Is this answer reasonable? The conversion factor in Table 1.3 tells us that there are more liters in a given volume than gallons. How much more? Approximately four times more. We also know that any volume in milliliters is 1000 times larger than the same volume in liters. Thus, we expect that the volume expressed in milliliters will be 4×1000, or 4000 , times more than the volume given in gallons. The estimated volume in milliliters will be approximately 1.8×4000, or 7000 mL . But we also expect that the actual answer should be somewhat less than the estimated figure because we overestimated the conversion factor (4 rather than 3.785). Thus, the answer, 6980 mL , is quite reasonable. Note that the answer is given to four significant figures. The decimal point after the zero makes that point clear. We do not need a period after 1000 in the defined conversion factor; that is an exact number.
Problem 1.3
Calculate the number of kilometers in 8.55 miles. Check your answer to see whether it is reasonable.

©WL Interactive Example 1.4 Unit Conversion: Multiple Units

The maximum speed limit on many roads in the United States is $65 \mathrm{mi} / \mathrm{h}$. How many meters per second (m / s) is this speed?

Strategy

We use four conversion factors in succession. It is more important than ever to keep track of units.

Estimating the answer is a good thing to do when working any mathematical problem, not just unit conversions. We are not using decimal points after trailing zeros in the approximation.

Solution

Here, we have essentially a double conversion problem: We must convert miles to meters and hours to seconds. We use as many conversion factors as necessary, always making sure that we use them in such a way that the proper units cancel:

$$
65 \frac{\mathrm{mi}}{\mathrm{k}} \times \frac{1.609 \mathrm{~km}}{1 \mathrm{mi}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{kmI}} \times \frac{1 \mathrm{k}}{60 \mathrm{~min}} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=29 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Is this answer reasonable? To estimate the $65 \mathrm{mi} / \mathrm{h}$ speed in meters per second, we must first establish the relationship between miles and meters. As there are approximately 1.5 km in 1 mi , there must be approximately 1500 times more meters. We also know that in one hour, there are $60 \times 60=3600$ seconds. The ratio of meters to seconds will be approximately $1500 / 3600$, which is about one half. Therefore, we estimate that the speed in meters per second will be about one half of that in miles per hour, or $32 \mathrm{~m} / \mathrm{s}$. Once again, the actual answer, $29 \mathrm{~m} / \mathrm{s}$, is not far from the estimate of $32 \mathrm{~m} / \mathrm{s}$, so the answer is reasonable.

Problem 1.4

Convert the speed of sound, $332 \mathrm{~m} / \mathrm{s}$ to mi / h. Check your answer to see whether it is reasonable.

Example 1.5 Unit Conversion: Multiple Units and Health Care

A physician recommends adding 100. mg of morphine to 500. cc of IV fluid and administering it at a rate of $20 . \mathrm{cc} / \mathrm{h}$ to alleviate a patient's pain. Determine how many grams per second (g/s) the patient is receiving.

Strategy

Here, we use four conversion factors, rather than a single one. It is important to keep track of the desired units in the calculation and set up the other units in a way that allows us to cancel them out. It is also important to note that certain conversion factors do not need to be looked up in a table. Instead, they can be found in the problem (100. $\mathrm{mg}=500$. cc and 20. $\mathrm{cc}=1 \mathrm{~h}$).

Solution

We must convert the numerator from milligrams to grams and the denominator from cubic centimeters to seconds using the provided information. Because we know that $1000 \mathrm{mg}=1 \mathrm{~g}, 60 \mathrm{~min}=1 \mathrm{~h}$, and $60 \mathrm{~s}=1 \mathrm{~min}$, we can solve this problem by multiplying these conversion factors and making sure the units provided in the problem cancel out:

$$
\frac{100 . \mathrm{mg}}{500 . \mathrm{cc}} \times \frac{20 . \mathrm{cc}}{1 \mathrm{k}} \times \frac{1 \mathrm{~g}}{1000 \mathrm{mg}} \times \frac{1 \mathrm{k}}{60 \min } \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=1.1 \times 10^{-6} \frac{\mathrm{~g}}{\mathrm{~s}}
$$

Is this answer reasonable? Because this problem involves manipulating various conversion units, one way to estimate the final answer is to examine the ratio of the numerator to denominator. In this case, we know from our setup that the answer has to be less than one since it is obtained by dividing by a larger quantity than itself.

As shown in these examples, when canceling units, we do not cancel the numbers. The numbers are multiplied and divided in the ordinary way.

Problem 1.5

An intensive care patient is receiving an antibiotic IV at the rate of $50 . \mathrm{mL} / \mathrm{h}$. The IV solution contains 1.5 g of the antibiotic in 1000 mL . Calculate the $\mathrm{mg} / \mathrm{min}$ of the drip. Check your answer to see if it is reasonable.

1.6 What Are the States of Matter?

Matter can exist in three states: gas, liquid, and solid. Gases have no definite shape or volume. They expand to fill whatever container they are put into. On the other hand, they are highly compressible and can be forced into small containers. Liquids also have no definite shape, but they do have a definite volume that remains the same when they are poured from one container to another. Liquids are only slightly compressible. Solids have definite shapes and definite volumes. They are essentially incompressible.

Whether a substance is a gas, a liquid, or a solid depends on its temperature and pressure. On a cold winter day, a puddle of liquid water turns to ice; it becomes a solid. If we heat water in an open pot at sea level, the liquid boils at $100^{\circ} \mathrm{C}$; it becomes a gas-we call it steam. If we heated the same pot of water on the top of Mount Everest, it would boil at about $70^{\circ} \mathrm{C}$ due to the reduced atmospheric pressure. Most substances can exist in the three states: they are gases at high temperature, liquids at a lower temperature, and solids when their temperature becomes low enough. Figure 1.5 shows a single substance in the three different states.

The chemical identity of a substance does not change when it is converted from one state to another. Water is still water whether it is in the form of ice, steam, or liquid water. We discuss the three states of matter, and the changes between one state and another, at greater length in Chapter 5.

FIGURE 1.5 The three states of matter for bromine: (a) bromine as a solid,
(b) bromine as a liquid, and (c) bromine as a gas.

The Deepwater Horizon oil spill (also referred to as the BP oil spill) in April 2010 flowed for three months in the Gulf of Mexico, releasing about 200 million barrels of crude oil. It is the largest accidental marine oil spill in the history of the petroleum industry. The spill continues to cause extensive damage to marine and wildlife habitats, as well as the Gulf's fishing and tourism industries.

FIGURE 1.6 Two separatory funnels containing water and another liquid. The density of carbon tetrachloride is $1.589 \mathrm{~g} / \mathrm{mL}$, that of water is $1.00 \mathrm{~g} / \mathrm{mL}$, and that of diethyl ether is $0.713 \mathrm{~g} / \mathrm{mL}$. In each case, the liquid with the lower density is on top.

1.7 What Are Density and Specific Gravity?

A. Density

One of the many pollution problems that the world faces is the spillage of petroleum into the oceans from oil tankers or from offshore drilling. When oil spills into the ocean, it floats on top of the water. The oil doesn't sink because it is not soluble in water and because water has a higher density than oil. When two liquids are mixed (assuming that one does not dissolve in the other), the one of lower density floats on top (Figure 1.6).

The density of any substance is defined as its mass per unit volume. Not only do all liquids have a density, but so do all solids and gases. Density is calculated by dividing the mass of a substance by its volume:

$$
d=\frac{m}{V} \quad d=\text { density, } m=\text { mass, } V=\text { volume }
$$

Example 1.6 Density Calculations

If 73.2 mL of a liquid has a mass of 61.5 g , what is its density in g / mL ?

Strategy

We use the formula for density and substitute the values we are given for mass and volume.

Solution

$$
d=\frac{m}{V}=\frac{61.5 \mathrm{~g}}{73.2 \mathrm{~mL}}=0.840 \frac{\mathrm{~g}}{\mathrm{~mL}}
$$

Problem 1.6

The density of titanium is $4.54 \mathrm{~g} / \mathrm{mL}$. What is the mass, in grams, of 17.3 mL of titanium? Check your answer to see whether it is reasonable.

Example 1.7 Using Density to Find Volume

The density of iron is $7.86 \mathrm{~g} / \mathrm{cm}^{3}$. What is the volume in milliliters of an irregularly shaped piece of iron that has a mass of 524 g ?

Strategy

We are given density and mass. The volume is the unknown quantity in the equation. We substitute the known quantities in the formula for density and solve for volume.

Solution

Here, we are given the mass and the density. In this type of problem, it is useful to derive a conversion factor from the density. Since $1 \mathrm{~cm}^{3}$ is exactly 1 mL , we know that the density is $7.86 \mathrm{~g} / \mathrm{mL}$. This means that 1 mL of iron has a mass of 7.86 g . From this, we can get two conversion factors:

$$
\frac{1 \mathrm{~mL}}{7.86 \mathrm{~g}} \text { and } \frac{7.86 \mathrm{~g}}{1 \mathrm{~mL}}
$$

As usual, we multiply the mass by whichever conversion factor results in the cancellation of all but the correct unit:

$$
524 \mathrm{~g} \times \frac{1 \mathrm{~mL}}{7.86 \mathrm{~g}}=66.7 \mathrm{~mL}
$$

Is this answer reasonable? The density of $7.86 \mathrm{~g} / \mathrm{mL}$ tells us that the volume in milliliters of any piece of iron is always less than its mass in grams. How much less? Approximately eight times less. Thus, we expect the volume to be approximately $500 / 8=63 \mathrm{~mL}$. As the actual answer is 66.7 mL , it is reasonable.

Problem 1.7

An unknown substance has a mass of 56.8 g and occupies a volume of 23.4 mL . What is its density in g / mL ? Check your answer to see whether it is reasonable.

The density of any liquid or solid is a physical property that is constant, which means that it always has the same value at a given temperature. We use physical properties to help identify a substance. For example, the density of chloroform (a liquid formerly used as an inhalation anesthetic) is $1.483 \mathrm{~g} / \mathrm{mL}$ at $20^{\circ} \mathrm{C}$. If we want to find out if an unknown liquid is chloroform, one thing we might do is measure its density at $20^{\circ} \mathrm{C}$. If the density is, say, $1.355 \mathrm{~g} / \mathrm{mL}$, we know the liquid isn't chloroform. If the density is $1.483 \mathrm{~g} / \mathrm{mL}$, we cannot be sure the liquid is chloroform, because other liquids might also have this density, but we can then measure other physical properties (the boiling point, for example). If all the physical properties we measure match those of chloroform, we can be reasonably sure the liquid is chloroform.

We have said that the density of a pure liquid or solid is a constant at a given temperature. Density does change when the temperature changes. Almost always, density decreases with increasing temperature. This is true because mass does not change when a substance is heated, but volume almost always increases because atoms and molecules tend to get farther apart as the temperature increases. Since $d=m / V$, if m stays the same and V gets larger, d must get smaller.

The most common liquid, water, provides a partial exception to this rule. As the temperature increases from $4^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$, the density of water does decrease, but from $0^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$, the density increases. That is, water has its maximum density at $4^{\circ} \mathrm{C}$. This anomaly and its consequences are due to the unique structure of water and will be discussed in Chemical Connections 5E.

B. Specific Gravity

Because density is equal to mass divided by volume, it always has units, most commonly g / mL or g / cc or (g / L for gases). Specific gravity is numerically the same as density, but it has no units (it is dimensionless). The reason why there are no units is because specific gravity is defined as a comparison of the density of a substance with the density of water, which is taken as a standard. For example, the density of copper at $20^{\circ} \mathrm{C}$ is $8.92 \mathrm{~g} / \mathrm{mL}$. The density of water at the same temperature is $1.00 \mathrm{~g} / \mathrm{mL}$. Therefore, copper is 8.92 times as dense as water, and its specific gravity at $20^{\circ} \mathrm{C}$ is 8.92 . Because water is taken as the standard and because the density of water is $1.00 \mathrm{~g} / \mathrm{mL}$ at $20^{\circ} \mathrm{C}$, the specific gravity of any substance is always numerically equal to its density, provided that the density is measured in g / mL or g / cc.

FIGURE 1.7 Urinometer.

Potential energy is stored in this drawn bow and becomes kinetic energy in the arrow when released.

Specific gravity is often measured by a hydrometer. This simple device consists of a weighted glass bulb that is inserted into a liquid and allowed to float. The stem of the hydrometer has calibration marks, and the specific gravity is read where the meniscus (the curved surface of the liquid) hits the marking. The specific gravity of the acid in your car battery and that of a urine sample in a clinical laboratory are measured by hydrometers. A hydrometer measuring a urine sample is also called urinometer (Figure 1.7). Normal urine can vary in specific gravity from about 1.010 to 1.030 . Patients with diabetes mellitus have an abnormally high specific gravity of their urine samples, while those with some forms of kidney disease have an abnormally low specific gravity.

Example 1.8 Specific Gravity

The density of ethanol at $20^{\circ} \mathrm{C}$ is $0.789 \mathrm{~g} / \mathrm{mL}$. What is its specific gravity?

Strategy

We use the definition of specific gravity.

Solution

$$
\text { Specific gravity }=\frac{0.789 \mathrm{~g} / \mathrm{mL}}{1.00 \mathrm{~g} / \mathrm{mL}}=0.789
$$

Problem 1.8

The specific gravity of a urine sample at $20^{\circ} \mathrm{C}$ is 1.016 . What is its density, in g / mL ?

1.8 How Do We Describe the Various Forms of Energy?

Energy is defined as the capacity to do work. It can be described as being either kinetic energy or potential energy.

Kinetic energy (KE) is the energy of motion. Any object that is moving possesses kinetic energy. We can calculate how much kinetic energy by the formula $\mathrm{KE}=\frac{1}{2} m v^{2}$, where m is the mass of the object and v is its velocity. This means that kinetic energy increases (1) when an object moves faster and (2) when a heavier object is moving. When a truck and a bicycle are moving at the same velocity, the truck has more kinetic energy.

Potential energy is stored energy. The potential energy possessed by an object arises from its capacity to move or to cause motion. For example, body weight in the up position on a seesaw contains potential energy-it is capable of doing work. If given a slight push, it will move down. The potential energy of the body in the up position is converted to kinetic energy as the body moves down on the seesaw. Work is done by gravity in the process. Figure 1.8 shows another way in which potential energy is converted to kinetic energy.

An important principle in nature is that things have a tendency to seek their lowest possible potential energy. We all know that water always flows downhill and not uphill.

Several forms of energy exist. The most important are (1) mechanical energy, light, heat, and electrical energy, which are examples of kinetic energy possessed by all moving objects, whether elephants or molecules or electrons, and (2) chemical energy and nuclear energy, which are examples of potential energy or stored energy. In chemistry, the more common form of potential energy is chemical energy-the energy stored within chemical substances

and given off when they take part in a chemical reaction. For example, a log possesses chemical energy. When the log is ignited in a fireplace, the chemical energy (potential) of the wood is turned into energy in the form of heat and light. Specifically, the potential energy has been transformed into thermal energy (heat makes molecules move faster) and the radiant energy of light.

The various forms of energy can be converted from one to another. In fact, we make such conversions all the time. A power plant operates either on the chemical energy derived from burning fuel or on nuclear energy. This energy is converted to heat, which is converted to the electricity that is sent over transmission wires into houses and factories. Here, we convert the electricity to light, heat (in an electrical heater, for example), or mechanical energy (in the motors of refrigerators, vacuum cleaners, and other devices).

Although one form of energy can be converted to another, the total amount of energy in any system does not change. Energy can be neither created nor destroyed. This statement is called the law of conservation of energy.*

FIGURE 1.8 The water held back by the dam possesses potential energy, which is converted to kinetic energy when the water is released.

An example of energy conversion. Light energy from the sun is converted to electrical energy by solar cells. The electricity runs a refrigerator on the back of the camel, keeping the vaccines cool so that they can be delivered to remote locations.

\qquad

1.9 How Do We Describe Heat and the Ways in Which It is Transferred?

A. Heat and Temperature

One form of energy that is particularly important in chemistry is heat. This is the form of energy that most frequently accompanies chemical reactions. Heat is not the same as temperature, however. Heat is a form of energy, but temperature is not.

The difference between heat and temperature can be seen in the following example. If we have two beakers, one containing 100 mL of water and the other containing 1 L of water at the same temperature, the heat content of the water in the larger beaker is ten times that of the water in the smaller beaker, even though the temperature is the same in both. If you were to dip your hand accidentally into a liter of boiling water, you would be much more severely burned than if only one drop fell on your hand. Even though the water is at the same temperature in both cases, the liter of boiling water has much more heat.

As we saw in Section 1.4, temperature is measured in degrees. Heat can be measured in various units, the most common of which is the calorie, which is defined as the amount of heat necessary to raise the temperature

[^0]
Chemical Connections 1B

Hypothermia and Hyperthermia

The human body cannot tolerate temperatures that are too low. A person outside in very cold weather (say, $-20^{\circ} \mathrm{F}$ $\left[-29^{\circ} \mathrm{C}\right]$) who is not protected by heavy clothing will eventually freeze to death because the body loses heat. Normal body temperature is $37^{\circ} \mathrm{C}$. When the outside temperature is lower than that, heat flows out of the body. When the air temperature is moderate $\left(10^{\circ} \mathrm{C}\right.$ to $\left.25^{\circ} \mathrm{C}\right)$, this poses no problem and is, in fact, necessary because the body produces more heat than it needs and must lose some. At extremely low temperatures, however, too much heat is lost and body temperature drops, a condition called hypothermia. A drop in body temperature of 1 or $2^{\circ} \mathrm{C}$ causes shivering, which is the body's attempt to increase its temperature by the heat generated through muscular action. An even greater drop results in unconsciousness and eventually death.

The opposite condition is hyperthermia. It can be caused either by high outside temperatures or by the body itself when an individual develops a high fever. A sustained body temperature as high as $41.7^{\circ} \mathrm{C}\left(107^{\circ} \mathrm{F}\right)$ is usually fatal.

The label on this sleeping bag indicates the temperature range in which it can be used safely.

Test your knowledge with Problems 1.71 and 1.72.

of 1 g of liquid water by $1^{\circ} \mathrm{C}$. This is a small unit, and chemists more often use the kilocalorie (kcal):

$$
1 \mathrm{kcal}=1000 \mathrm{cal}
$$

Nutritionists use the word "Calorie" (with a capital "C") to mean the same thing as "kilocalorie"; that is, $1 \mathrm{Cal}=1000 \mathrm{cal}=1 \mathrm{kcal}$. The calorie is not part of the SI. The official SI unit for heat is the joule (J), which is about one-fourth as big as the calorie:

$$
1 \mathrm{cal}=4.184 \mathrm{~J}
$$

B. Specific Heat

As we noted, it takes 1 cal to raise the temperature of 1 g of liquid water by $1^{\circ} \mathrm{C}$. Specific heat (SH) is the amount of heat necessary to raise the temperature of 1 g of any substance by $1^{\circ} \mathrm{C}$. Each substance has its own specific heat, which is a physical property of that substance, like density or melting point. Table 1.4

Table 1.4 Specific Heats for Some Common Substances

	Specific Heat $\left(\mathbf{c a l} / \mathbf{g} \cdot{ }^{\circ} \mathbf{C}\right)$	Substance	Specific Heat $\left(\mathbf{c a l} / \mathbf{g} \cdot{ }^{\circ} \mathbf{C}\right)$
Substance	1.00	Wood (typical)	0.42
Water	0.48	Glass (typical)	0.22
Ice	0.48	Rock (typical)	0.20
Steam	0.11	Ethanol	0.59
Iron	0.22	Methanol	0.61
Aluminum	0.092	Ether	0.56
Copper	0.031	Carbon tetrachloride	0.21
Lead			

Chemical Connections 1C

Cold Compresses, Waterbeds, and Lakes

The high specific heat of water is useful in cold compresses and makes them last a long time. For example, consider two patients with cold compresses: one compress made by soaking a towel in water and the other made by soaking a towel in ethanol. Both are at $0^{\circ} \mathrm{C}$. Each gram of water in the water compress requires 25 cal to make the temperature of the compress rise to $25^{\circ} \mathrm{C}$ (after which it must be changed). Because the specific heat of ethanol is $0.59 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$ (see Table 1.4), each gram of ethanol requires only 15 cal to reach $25^{\circ} \mathrm{C}$. If the two patients give off heat at the same rate, the ethanol compress is less effective because it will reach $25^{\circ} \mathrm{C}$ a good deal sooner than the water compress and will need to be changed sooner.

The high specific heat of water also means that it takes a great deal of heat to increase its temperature. That is why it takes a long time to get a pot of water to boil. Anyone who has a waterbed (300 gallons) knows that it takes days for the heater to bring the bed up to the desired temperature. It is particularly annoying when an overnight guest tries to adjust the temperature of your waterbed because

The ice on this lake will take days, or even weeks, to melt in the spring.
the guest will probably have left before the change is noticed, but then you will have to set it back to your favorite temperature. This same effect in reverse explains why the outside temperature can be below zero $\left({ }^{\circ} \mathrm{C}\right)$ for weeks before a lake will freeze. Large bodies of water do not change temperature very quickly.

Test your knowledge with Problem 1.73.
lists specific heats for a few common substances. For example, the specific heat of iron is $0.11 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. Therefore, if we had 1 g of iron at $20^{\circ} \mathrm{C}$, it would require only 0.11 cal to increase the temperature to $21^{\circ} \mathrm{C}$. Under the same conditions, aluminum would require twice as much heat. Thus, cooking in an aluminum pan of the same weight as an iron pan would require more heat than cooking in the iron pan. Note from Table 1.4 that ice and steam do not have the same specific heat as liquid water.

It is easy to make calculations involving specific heats. The equation is
Amount of heat $=$ specific heat \times mass \times change in temperature
Amount of heat $=\mathrm{SH} \times m \times \Delta T$
where ΔT is the change in temperature.
We can also write this equation as

$$
\text { Amount of heat }=\mathrm{SH} \times m \times\left(T_{2}-T_{1}\right)
$$

where T_{2} is the final temperature and T_{1} is the initial temperature in ${ }^{\circ} \mathrm{C}$.

Example 1.9 Specific Heat

How many calories are required to heat 352 g of water from $23^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$?

Strategy

We use the equation for the amount of heat and substitute the values given for the mass of water and the temperature change. We have already seen the value for the specific heat of water.

We write 450. cal with a decimal point to indicate three significant figures, also $20 .{ }^{\circ} \mathrm{C}$ to indicate two significant figures, but "40 times" and "20 calories" without decimal points to show quick approximations. Likewise, 230. cal has three significant figures.

Solution

$$
\begin{aligned}
\text { Amount of heat } & =\mathrm{SH} \times m \times \Delta T \\
\text { Amount of heat } & =\mathrm{SH} \times m \times\left(T_{2}-T_{1}\right) \\
& =\frac{1.00 \mathrm{cal}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}} \times 352 \mathrm{~g} \times(95-23)^{\circ} \mathrm{C} \\
& =2.5 \times 10^{4} \mathrm{cal}
\end{aligned}
$$

Is this answer reasonable? Each gram of water requires one calorie to raise its temperature by one degree. We have approximately 350 g of water. To raise its temperature by one degree would therefore require approximately 350 calories. But we are raising the temperature not by one degree but by approximately 70 degrees (from 23 to 95). Thus, the total number of calories will be approximately $70 \times 350=24,500$ cal, which is close to the calculated answer. (Even though we were asked for the answer in calories, we should note that it will be more convenient to convert the answer to 25 kcal . We are going to see that conversion from time to time.)

Problem 1.9

How many calories are required to heat 731 g of water from $8^{\circ} \mathrm{C}$ to $74^{\circ} \mathrm{C}$? Check your answer to see whether it is reasonable.

Example 1.10 Specific Heat and Temperature Change

If we add 450 . cal of heat to 37 g of ethanol at $20 .{ }^{\circ} \mathrm{C}$, what is the final temperature?

Strategy

The equation we have has a term for temperature change. We use the information we are given to calculate that change. We then use the value we are given for the initial temperature and the change to find the final temperature.

Solution

The specific heat of ethanol is $0.59 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$ (see Table 1.4).

$$
\begin{aligned}
\text { Amount of heat } & =\mathrm{SH} \times m \times \Delta T \\
\text { Amount of heat } & =\mathrm{SH} \times m \times\left(T_{2}-T_{1}\right) \\
450 . \mathrm{cal} & =0.59 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \times 37 \mathrm{~g} \times\left(T_{2}-T_{1}\right)
\end{aligned}
$$

We can show the units in fraction form by rewriting this equation.

$$
\begin{aligned}
450 . \mathrm{cal} & =0.59 \frac{\mathrm{cal}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}} \times 37 \mathrm{~g} \times\left(T_{2}-T_{1}\right) \\
\left(T_{2}-T_{1}\right) & =\frac{\text { amount of heat }}{\mathrm{SH} \times m} \\
\left(T_{2}-T_{1}\right) & =\frac{450 \cdot \mathrm{cat}}{\left[\frac{0.59 \mathrm{cat} \times 37 \mathrm{~g}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}}\right]}=\frac{21}{1 /{ }^{\circ} \mathrm{C}}=21^{\circ} \mathrm{C}
\end{aligned}
$$

(Note that we have the reciprocal of temperature in the denominator, which gives us temperature in the numerator. The answer has units of degrees Celsius). Because the starting temperature is $20^{\circ} \mathrm{C}$, the final temperature is $41^{\circ} \mathrm{C}$.

Is this answer reasonable? The specific heat of ethanol is $0.59 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. This value is close to 0.5 , meaning that about half a calorie will raise the temperature of 1 g by $1^{\circ} \mathrm{C}$. However, 37 g of ethanol need approximately 40 times as many calories for a rise, and $40 \times \frac{1}{2}=20$ calories. We are adding 450. calories, which is about 20 times as much. Thus, we expect the temperature to rise by about $20^{\circ} \mathrm{C}$, from $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. The actual answer, $41^{\circ} \mathrm{C}$, is quite reasonable.

Problem 1.10

A 100 g piece of iron at $25^{\circ} \mathrm{C}$ is heated by adding 230 . cal. What will be the final temperature? Check your answer to see whether it is reasonable.

Example 1.11 Calculating Specific Heat

We heat 50.0 g of an unknown substance by adding 205 cal , and its temperature rises by $7.0^{\circ} \mathrm{C}$. What is its specific heat? Using Table 1.4, identify the substance.

Strategy

We solve the equation for specific heat by substituting the values for mass, amount of heat, and temperature change. We compare the number we obtain with the values in Table 1.4 to identify the substance.

Solution

$$
\begin{aligned}
& \mathrm{SH}=\frac{\text { Amount of heat }}{m \times(\Delta T)} \\
& \mathrm{SH}=\frac{\text { Amount of heat }}{m \times\left(T_{2}-T_{1}\right)} \\
& \mathrm{SH}=\frac{205 \mathrm{cal}}{50.0 \mathrm{~g} \times 7.0^{\circ} \mathrm{C}}=0.59 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}
\end{aligned}
$$

The substance in Table 1.4 having a specific heat of $0.59 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$ is ethanol.
Is this answer reasonable? If we had water instead of an unknown substance with $\mathrm{SH}=1 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, raising the temperature of 50.0 g by $7.0^{\circ} \mathrm{C}$ would require $50 \times 7.0=350$ cal. But we added only approximately 200 cal . Therefore, the SH of the unknown substance must be less than 1.0. How much less? Approximately $200 / 350=0.6$. The actual answer, $0.59 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, is quite reasonable.

Problem 1.11

It required 88.2 cal to heat 13.4 g of an unknown substance from $23^{\circ} \mathrm{C}$ to $176^{\circ} \mathrm{C}$. What is the specific heat of the unknown substance? Check your answer to see whether it is reasonable.

Summary

VWL sign in at www.cengage.com/owl to develop problem-solving skills and complete online homework assigned by your professor.

Section 1.1 Why Do We Call Chemistry the Study of

 Matter?- Chemistry is the science that deals with the structure of matter and the changes it can undergo. In a chemical change, or chemical reaction, substances are used up and others are formed.
- Chemistry is also the study of energy changes during chemical reactions. In physical changes, substances do not change their identity.

Section 1.2 What Is the Scientific Method?

- The scientific method is a tool used in science and medicine. The heart of the scientific method is the testing of hypotheses and theories by collecting facts.

Section 1.3 How Do Scientists Report Numbers?

- Because we frequently use very large or very small numbers, we use powers of 10 to express these numbers more conveniently, a method called exponential notation.
- With exponential notation, we no longer have to keep track of so many zeros, and we have the added convenience of being able to see which digits convey information (significant figures) and which merely indicate the position of the decimal point.

Section 1.4 How Do We Make Measurements?

- In chemistry, we use the metric system for measurements.
- The base units are the meter for length, the liter for volume, the gram for mass, the second for time, and the joule for heat. Other units are indicated by prefixes that
represent powers of 10 . Temperature is measured in degrees Celsius or in Kelvins.

Section 1.5 What Is a Handy Way to Convert from One Unit to Another?

- Conversions from one unit to another are best done by the factor-label method, in which units are multiplied and divided to yield the units requested in the answer.

Section 1.6 What Are the States of Matter?

- There are three states of matter: solid, liquid, and gas.

Section 1.7 What Are Density and Specific Gravity?

- Density is mass per unit volume. Specific gravity is density relative to water and thus has no units. Density usually decreases with increasing temperature.

Section 1.8 How Do We Describe the Various Forms of Energy?

- Kinetic energy is energy of motion; potential energy is stored energy. Energy can be neither created nor destroyed, but it can be converted from one form to another.
- Examples of kinetic energy are: mechanical energy, light, heat, and electrical energy. Examples of potential energy are chemical energy and nuclear energy.

Section 1.9 How Do We Describe Heat and the Ways in Which It Is Transferred?

- Heat is a form of energy and is measured in calories. A calorie is the amount of heat necessary to raise the temperature of 1 g of liquid water by $1^{\circ} \mathrm{C}$.
- Every substance has a specific heat, which is a physical constant. The specific heat is the number of calories required to raise the temperature of 1 g of a substance by $1^{\circ} \mathrm{C}$.

Problems

VWL Interactive versions of these problems may be assigned in OWL.
Orange-numbered problems are applied.

Section 1.1 Why Do We Call Chemistry the Study of Matter?

1.12 The life expectancy of a citizen in the United States is 76 years. Eighty years ago it was 56 years. In your opinion, what was the major contributor to this spectacular increase in life expectancy? Explain your answer.
1.13 Define the following terms:
(a) Matter
(b) Chemistry

Section 1.2 What Is the Scientific Method?

1.14 In Table 1.4, you find four metals (iron, aluminum, copper, and lead) and three organic compounds (ethanol, methanol, and ether). What kind of hypothesis would you suggest about the specific heats of these chemicals?
1.15 In a newspaper, you read that Dr. X claimed that he has found a new remedy to cure diabetes.

The remedy is an extract of carrots. How would you classify this claim: (a) fact, (b) theory, (c) hypothesis, or (d) hoax? Explain your choice of answer.
1.16 Classify each of the following as a chemical or physical change:
(a) Burning gasoline
(b) Making ice cubes
(c) Boiling oil
(d) Melting lead
(e) Rusting iron
(f) Making ammonia from nitrogen and hydrogen
(g) Digesting food

Section 1.3 How Do Scientists Report Numbers?

Exponential Notation

1.17 Write in exponential notation:
(a) 0.351
(b) 602.1
(c) 0.000128
(d) 628122
1.18 Write out in full:
(a) 4.03×10^{5}
(b) 3.2×10^{3}
(c) 7.13×10^{-5}
(d) 5.55×10^{-10}
1.19 Multiply:
(a) $\left(2.16 \times 10^{5}\right)\left(3.08 \times 10^{12}\right)$
(b) $\left(1.6 \times 10^{-8}\right)\left(7.2 \times 10^{8}\right)$
(c) $\left(5.87 \times 10^{10}\right)\left(6.6 \times 10^{-27}\right)$
(d) $\left(5.2 \times 10^{-9}\right)\left(6.8 \times 10^{-15}\right)$
1.20 Divide:
(a) $\frac{6.02 \times 10^{23}}{2.87 \times 10^{10}}$
(b) $\frac{3.14}{2.93 \times 10^{-4}}$
(c) $\frac{5.86 \times 10^{-9}}{2.00 \times 10^{3}}$
(d) $\frac{7.8 \times 10^{-12}}{9.3 \times 10^{-14}}$
(e) $\frac{6.83 \times 10^{-12}}{5.02 \times 10^{14}}$
1.21 Add:
(a) $\left(7.9 \times 10^{4}\right)+\left(5.2 \times 10^{4}\right)$
(b) $\left(8.73 \times 10^{4}\right)+\left(6.7 \times 10^{3}\right)$
(c) $\left(3.63 \times 10^{-4}\right)+\left(4.776 \times 10^{-3}\right)$
1.22 Subtract:
(a) $\left(8.50 \times 10^{3}\right)-\left(7.61 \times 10^{2}\right)$
(b) $\left(9.120 \times 10^{-2}\right)-\left(3.12 \times 10^{-3}\right)$
(c) $\left(1.3045 \times 10^{2}\right)-\left(2.3 \times 10^{-1}\right)$
1.23 Solve:

$$
\frac{\left(3.14 \times 10^{3}\right) \times\left(7.80 \times 10^{5}\right)}{\left(5.50 \times 10^{2}\right)}
$$

1.24 Solve:

$$
\frac{\left(9.52 \times 10^{4}\right) \times\left(2.77 \times 10^{-5}\right)}{\left(1.39 \times 10^{7}\right) \times\left(5.83 \times 10^{2}\right)}
$$

Significant Figures

1.25 How many significant figures are in the following?
(a) 0.012
(b) 0.10203
(c) 36.042
(d) 8401.0
(e) 32100
(f) 0.0402
(g) 0.000012
1.26 How many significant figures are in the following?
(a) 5.71×10^{13}
(b) 4.4×10^{5}
(c) 3×10^{-6}
(d) 4.000×10^{-11}
(e) 5.5550×10^{-3}
1.27 Round off to two significant figures:
(a) 91.621
(b) 7.329
(c) 0.677
(d) 0.003249
(e) 5.88
1.28 Multiply these numbers, using the correct number of significant figures in your answer:
(a) 3630.15×6.8
(b) 512×0.0081
(c) $5.79 \times 1.85825 \times 1.4381$
1.29 Divide these numbers, using the correct number of significant figures in your answer:
(a) $\frac{3.185}{2.08}$
(b) $\frac{6.5}{3.0012}$
(c) $\frac{0.0035}{7.348}$
1.30 Add these groups of measured numbers using the correct number of significant figures in your answer:
(a) 37.4083 5.404
10916.3
3.94
0.0006
(b) 84
8.215
0.01
151.7
(c) 51.51
100.27
16.878
3.6817

Section 1.4 How Do We Make Measurements?

1.31 In the SI system, the second is the base unit of time. We talk about atomic events that occur in picoseconds ($10^{-12} \mathrm{~s}$) or even in femtoseconds ($10^{-15} \mathrm{~s}$). But we don't talk about megaseconds or kiloseconds; the old standards of minutes, hours, and days prevail. How many minutes and hours are 20 kiloseconds?
1.32 How many grams are in the following?
(a) 1 kg
(b) 1 mg
1.33 Estimate without actually calculating which one is the shorter distance:
(a) 20 mm or 0.3 m
(b) 1 inch or 30 mm
(c) 2000 m or 1 mile
1.34 For each of these, tell which figure is closest to the correct answer:
(a) A baseball bat has a length of 100 mm or 100 cm or 100 m
(b) A glass of milk holds 23 cc or 230 mL or 23 L
(c) A man weighs 75 mg or 75 g or 75 kg
(d) A tablespoon contains 15 mL or 150 mL or 1.5 L
(e) A paper clip weighs 50 mg or 50 g or 50 kg
(f) Your hand has a width of 100 mm or 100 cm or 100 m
(g) An audiocassette weighs 40 mg or 40 g or 40 kg
1.35 You are taken for a helicopter ride in Hawaii from Kona (sea level) to the top of the volcano Mauna Kea. Which property of your body would change during the helicopter ride?
(a) height
(b) weight
(c) volume
(d) mass
1.36 Convert to Celsius and to Kelvin:
(a) $320^{\circ} \mathrm{F}$
(b) $212^{\circ} \mathrm{F}$
(c) $0^{\circ} \mathrm{F}$
(d) $-250^{\circ} \mathrm{F}$
1.37 Convert to Fahrenheit and to Kelvin:
(a) $25^{\circ} \mathrm{C}$
(b) $40^{\circ} \mathrm{C}$
(c) $250^{\circ} \mathrm{C}$
(d) $-273^{\circ} \mathrm{C}$

Section 1.5 What Is a Handy Way to Convert from One Unit to Another?

1.38 Make the following conversions (conversion factors are given in Table 1.3):
(a) 42.6 kg to lb
(b) 1.62 lb to g
(c) 34 in. to cm
(d) 37.2 km to mi
(e) 2.73 gal to L
(f) 62 g to oz
(g) 33.61 qt to L
(h) 43.7 L to gal
(i) 1.1 mi to km
(j) 34.9 mL to fl oz
1.39 Make the following metric conversions:
(a) 96.4 mL to L
(b) 275 mm to cm
(c) 45.7 kg to g
(d) 475 cm to m
(e) 21.64 cc to mL
(f) 3.29 L to cc
(g) 0.044 L to mL
(h) 711 g to kg
(i) 63.7 mL to cc
(j) 0.073 kg to mg
(k) 83.4 m to mm
(l) 361 mg to g
1.40 There are 2 bottles of cough syrup available on the shelf at the pharmacy. One contains 9.5 oz and the other has 300. cc. Which one has the larger volume?
1.41 A humidifier located at a nursing station holds 4.00 gallons of water. How many fluid ounces of water will completely fill the reservoir?
1.42 You drive in Canada where the distances are marked in kilometers. The sign says you are 80 km from Ottawa. You are traveling at a speed of $75 \mathrm{mi} / \mathrm{h}$. Would you reach Ottawa within one hour, after one hour, or later than that?
1.43 The speed limit in some European cities is $80 \mathrm{~km} / \mathrm{h}$. How many miles per hour is this?
1.44 Your car gets 25.00 miles on a gallon of gas. What would be your car's fuel efficiency in km / L ?
1.45 Children's Chewable Tylenol contains 80. mg of acetaminophen per tablet. If the recommended dosage is $10 . \mathrm{mg} / \mathrm{kg}$, how many tablets are needed for a $70 .-1 \mathrm{lb}$ child?
1.46 A patient weighs 186 lbs. She must receive an IV medication based on body weight. The order reads, "Give 2.0 mg per kilogram." The label reads " $10 . \mathrm{mg}$ per cc." How many mL of medication would you give?
1.47 The doctor orders administration of a drug at 120. mg per 1000. mL at $400 \mathrm{~mL} / 24 \mathrm{~h}$. How many mg of drug will the patient receive every 8.0 hours?
1.48 The recommended pediatric dosage of Velosef is $20 . \mathrm{mg} / \mathrm{kg} /$ day. What is the daily dose in mg for a child weighing 36 pounds? If the stock vial of Velosef
is labeled $208 \mathrm{mg} / \mathrm{mL}$, how many mL would be given in a daily dose?
1.49 A critical care physician prescribes an IV of heparin to be administered at a rate of 1100 units per hour. The IV contains 26,000 units of heparin per liter. Determine the rate of the IV in cc / h.
1.50 If an IV is mixed so that each 150 mL contains 500. mg of the drug lidocaine, how many minutes will it take for 750 mg of lidocaine to be administered if the rate is set at $5 \mathrm{~mL} / \mathrm{min}$?
1.51 A nurse practitioner orders isotonic sodium lactate $50 . \mathrm{mL} / \mathrm{kg}$ body mass to be administered intravenously for a $139-\mathrm{lb}$ patient with severe acidosis. The rate of flow is $150 \mathrm{gtts} / \mathrm{min}$, and the IV administration set delivers 20. gtts $/ \mathrm{mL}$, where the unit "gtts" stands for drops of liquid. What is the running time in minutes?
1.52 An order for a patient reads "Give 40. mg of pantoprazole IV and 5 g of MgSO_{4} IV." The pantoprazole should be administered at a concentration of $0.4 \mathrm{mg} / \mathrm{mL}$ and the MgSO_{4} should be administered at a concentration of $0.02 \mathrm{~g} / \mathrm{mL}$ in separate IV infusion bags. What is the total fluid volume the patient has received from both IV infusions?

Section 1.6 What Are the States of Matter?

1.53 Which states of matter have a definite volume?
1.54 Will most substances be solids, liquids, or gases at low temperatures?
1.55 Does the chemical nature of a substance change when it melts from a solid to a liquid?

Section 1.7 What Are Density and Specific Gravity?

1.56 The volume of a rock weighing 1.075 kg is 334.5 mL . What is the density of the rock in g / mL ? Express it to three significant figures.
1.57 The density of manganese is $7.21 \mathrm{~g} / \mathrm{mL}$, that of calcium chloride is $2.15 \mathrm{~g} / \mathrm{mL}$, and that of sodium acetate is $1.528 \mathrm{~g} / \mathrm{mL}$. You place these three solids in a liquid, in which they are not soluble. The liquid has a density of $2.15 \mathrm{~g} / \mathrm{mL}$. Which will sink to the bottom, which will stay on the top, and which will float in the middle of the liquid?
1.58 The density of titanium is $4.54 \mathrm{~g} / \mathrm{mL}$. What is the volume, in milliliters, of 163 g of titanium?
1.59 An injection of 4 mg of Valium has been prescribed for a patient suffering from muscle spasms. A sample of Valium labeled $5 \mathrm{mg} / \mathrm{mL}$ is on hand. How many mL should be injected?
1.60 The density of methanol at $20^{\circ} \mathrm{C}$ is $0.791 \mathrm{~g} / \mathrm{mL}$. What is the mass, in grams, of a 280 mL sample?
1.61 The density of dichloromethane, a liquid insoluble in water, is $1.33 \mathrm{~g} / \mathrm{cc}$. If dichloromethane and water are placed in a separatory funnel, which will be the upper layer?
1.62 A sample of 10.00 g of oxygen has a volume of 6702 mL . The same weight of carbon dioxide occupies 5058 mL .
(a) What is the density of each gas in g / L ?
(b) Carbon dioxide is used as a fire extinguisher to cut off the fire's supply of oxygen. Do the densities of these two gases explain the fireextinguishing ability of carbon dioxide?
1.63 Crystals of a material are suspended in the middle of a cup of water at $2^{\circ} \mathrm{C}$. This means that the densities of the crystal and of the water are the same. How might you enable the crystals to rise to the surface of the water so that you can harvest them?

Section 1.8 How Do We Describe the Various Forms of Energy?

1.64 On many country roads, you see telephones powered by a solar panel. What principle is at work in these devices?
1.65 While you drive your car, your battery is being charged. How would you describe this process in terms of kinetic and potential energy?

Section 1.9 How Do We Describe Heat and the Ways in Which It Is Transferred?

1.66 How many calories are required to heat the following (specific heats are given in Table 1.4)?
(a) 52.7 g of aluminum from $100^{\circ} \mathrm{C}$ to $285^{\circ} \mathrm{C}$
(b) 93.6 g of methanol from $-35^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
(c) 3.4 kg of lead from $-33^{\circ} \mathrm{C}$ to $730^{\circ} \mathrm{C}$
(d) 71.4 g of ice from $-77^{\circ} \mathrm{C}$ to $-5^{\circ} \mathrm{C}$
1.67 If 168 g of an unknown liquid requires 2750 cal of heat to raise its temperature from $26^{\circ} \mathrm{C}$ to $74^{\circ} \mathrm{C}$, what is the specific heat of the liquid?
1.68 The specific heat of steam is $0.48 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. How many kilocalories are needed to raise the temperature of 10.5 kg of steam from $120^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$?

Chemical Connections

1.69 (Chemical Connections 1A) If the recommended dose of a drug is 445 mg for a 180 lb man, what would be a suitable dose for a 135 lb man?
1.70 (Chemical Connections 1A) The average lethal dose of heroin is $1.52 \mathrm{mg} / \mathrm{kg}$ of body weight. Estimate how many grams of heroin would be lethal for a 200 lb man.
1.71 (Chemical Connections 1B) How does the body react to hypothermia?
1.72 (Chemical Connections 1B) Low temperatures often cause people to shiver. What is the function of this involuntary body action?
1.73 (Chemical Connections 1C) Which would make a more efficient cold compress, ethanol or methanol? (Refer to Table 1.4.)

Additional Problems

1.74 The meter is a measure of length. Tell what each of the following units measures:
(a) cm^{3}
(b) mL
(c) kg
(d) cal
(e) g / cc
(f) joule
(g) ${ }^{\circ} \mathrm{C}$
(h) cm / s
1.75 A brain weighing 1.0 lb occupies a volume of 620 mL . What is the specific gravity of the brain?
1.76 If the density of air is $1.25 \times 10^{-3} \mathrm{~g} / \mathrm{cc}$, what is the mass in kilograms of the air in a room that is 5.3 m long, 4.2 m wide, and 2.0 m high?
1.77 Classify these as kinetic or potential energy:
(a) Water held by a dam
(b) A speeding train
(c) A book on its edge before falling
(d) A falling book
(e) Electric current in a lightbulb
1.78 The kinetic energy possessed by an object with a mass of 1 g moving with a velocity of $1 \mathrm{~cm} / \mathrm{s}$ is called 1 erg . What is the kinetic energy, in ergs, of an athlete with a mass of 127 lb running at a velocity of $14.7 \mathrm{mi} / \mathrm{h}$?
1.79 A European car advertises an efficiency of $22 \mathrm{~km} / \mathrm{L}$, while an American car claims an economy of $30 \mathrm{mi} / \mathrm{gal}$. Which car is more efficient?
1.80 In Potsdam, New York, you can buy gas for US\$3.93/ gal. In Montreal, Canada, you pay US\$1.22/L.
(Currency conversions are outside the scope of this text, so you are not asked to do them here.) Which is the better buy? Is your calculation reasonable?
1.81 Shivering is the body's response to increase the body temperature. What kind of energy is generated by shivering?
1.82 When the astronauts walked on the Moon, they could make giant leaps in spite of their heavy gear.
(a) Why were their weights on the Moon so small?
(b) Were their masses different on the Moon than on the Earth?
1.83 Which of the following is the largest mass and which is the smallest?
(a) 41 g
(b) $3 \times 10^{3} \mathrm{mg}$
(c) $8.2 \times 10^{6} \mu \mathrm{~g}$
(d) $4.1310 \times 10^{-8} \mathrm{~kg}$
1.84 Which quantity is bigger in each of the following pairs?
(a) 1 gigaton : 10. megaton
(b) 10. micrometer : 1 millimeter
(c) 10. centigram : 200. milligram
1.85 In Japan, high-speed "bullet trains" move with an average speed of $220 . \mathrm{km} / \mathrm{h}$. If Dallas and Los Angeles were connected by such a train, how long would it take to travel nonstop between these cities (a distance of 1490. miles)?
1.86 The specific heats of some elements at $25^{\circ} \mathrm{C}$ are as follows: aluminum $=0.215 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$; carbon $($ graphite $)=0.170 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$; iron $=0.107 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$; mercury $=0.0331 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.
(a) Which element would require the smallest amount of heat to raise the temperature of 100 g of the element by $10^{\circ} \mathrm{C}$?
(b) If the same amount of heat needed to raise the temperature of 1 g of aluminum by $25^{\circ} \mathrm{C}$ were applied to 1 g of mercury, by how many degrees would its temperature be raised?
(c) If a certain amount of heat is used to raise the temperature of 1.6 g of iron by $10^{\circ} \mathrm{C}$, the temperature of 1 g of which element would also be raised by $10^{\circ} \mathrm{C}$, using the same amount of heat?
1.87 Water that contains deuterium rather than ordinary hydrogen (see Section 2.4D) is called heavy water. The specific heat of heavy water at $25^{\circ} \mathrm{C}$ is $4.217 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. Which requires more energy to raise the temperature of 10.0 g by $10^{\circ} \mathrm{C}$, water or heavy water?
1.88 One quart of milk costs 80 cents and one liter costs 86 cents. Which is the better buy?
1.89 Consider butter, density $0.860 \mathrm{~g} / \mathrm{mL}$, and sand, density $2.28 \mathrm{~g} / \mathrm{mL}$.
(a) If 1.00 mL of butter is thoroughly mixed with 1.00 mL of sand, what is the density of the mixture?
(b) What would be the density of the mixture if 1.00 g of the same butter were mixed with 1.00 g of the same sand?
1.90 Which speed is the fastest?
(a) $70 \mathrm{mi} / \mathrm{h}$
(b) $140 \mathrm{~km} / \mathrm{h}$
(c) $4.5 \mathrm{~km} / \mathrm{s}$
(d) $48 \mathrm{mi} / \mathrm{min}$
1.91 In calculating the specific heat of a substance, the following data are used: mass $=92.15 \mathrm{~g}$; heat $=$ 3.200 kcal ; rise in temperature $=45^{\circ} \mathrm{C}$. How many significant figures should you report in calculating the specific heat?
1.92 A solar cell generates 500. kilojoules of energy per hour. To keep a refrigerator at $4^{\circ} \mathrm{C}$, one needs 250 . kcal/h. Can the solar cell supply sufficient energy per hour to maintain the temperature of the refrigerator?
1.93 The specific heat of urea is $1.339 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. If one adds 60.0 J of heat to 10.0 g of urea at $20^{\circ} \mathrm{C}$, what would be the final temperature?
1.94 You are waiting in line in a coffee shop. As you look at the selections, you see that the decaffeinated coffee is labeled "chemical-free." Comment on this label in light of the material in Section 1.1.
1.95 Which number has more significant figures?
(a) 0.0000001
(b) 4.38
1.96 You are on vacation in Europe. You have bought a loaf of bread for a picnic lunch, and you want to buy some cheese to go with it. Do you buy 200. mg, 200. g, or 200 . kg?
1.97 You have just left Tucson, Arizona, on I-19 to go on a trip to Mexico. Distances on this highway are shown in kilometers. A sign says that the border crossing is 95 km away. You estimate that is about 150 miles to go. When you get to the border, you find that you have traveled less than 60 miles. What went wrong in your calculation?
1.98 The antifreeze-coolant compound used in cars does not have the same density as water. Would a hydrometer be useful for measuring the amount of antifreeze in the cooling system?
1.99 In photosynthesis, light energy from the sun is used to produce sugars. How does this process represent a conversion of energy from one form to another?
1.100 What is the difference between aspirin tablets that contain 81 mg of aspirin and tablets that contain 325 mg ?
1.101 In Canada, a sign indicates that the current temperature is $30^{\circ} \mathrm{C}$. Are you most likely to be wearing a down parka and wool slacks, jeans and a longsleeved shirt, or shorts and a T-shirt? What is the reason for your answer?
1.102 In very cold weather, ice fishing enthusiasts build small structures on the ice, drill holes, and put their fishing lines through the holes in the ice. How can fish survive under these conditions?
1.103 Most solids have a higher density than the corresponding liquid. Ice is less dense than water, with
corresponding expansion on freezing. How can this property be used to disrupt living cells by cycles of freezing and thawing?
1.104 A scientist claims to have found a treatment for ear infections in children. All the patients given this treatment showed improvement within three days. What comments do you have on this report?

Special Categories

Three special categories of problems-Tying It Together, Looking Ahead, and Challenge Problems-will appear from time to time at the ends of chapters. Not every chapter will have these problems, but they will appear to make specific points.

Tying It Together

1.105 Heats of reaction are frequently measured by monitoring the change in temperature of a water bath in which the reaction mixture is immersed. A water bath used for this purpose contains 2.000 L of water. In the course of the reaction, the temperature of the water rose $4.85^{\circ} \mathrm{C}$. How many calories were liberated by the reaction? (You will need to use what you know about unit conversions and apply that information to what you know about energy and heat.)
1.106 You have samples of urea (a solid at room temperature) and pure ethanol (a liquid at room temperature). Which technique or techniques would you use to measure the amount of each substance?

Looking Ahead

1.107 You have a sample of material used in folk medicine. Suggest the approach you would use to determine whether this material contains an effective substance for treating disease. If you do find a new and effective substance, can you think of a way to determine the amount present in your sample? (Pharmaceutical companies have used this approach to produce many common medications.)
1.108 Many substances that are involved in chemical reactions in the human body (and in all organisms) contain carbon, hydrogen, oxygen, and nitrogen arranged in specific patterns. Would you expect new medications to have features in common with these substances, or would you expect them to be drastically different? What are the reasons for your answer?

Challenge Problems

1.109 If 2 kg of a given reactant is consumed in the reaction described in Problem 1.105, how many calories are liberated for each kilogram?
1.110 You have a water sample that contains a contaminant you want to remove. You know that the contaminant is much more soluble in diethyl ether than it is in water. You have a separatory funnel available. Propose a way to remove the contaminant.
1.111 In the hospital, your doctor orders 100. mg of medication per hour. The label on the IV bag reads $5.0 \mathrm{~g} / 1000 \mathrm{~mL}$. The IV administration set delivers 15. gtts $/ \mathrm{mL}$, where the unit gtts denotes drops of liquid as explained in Problem 1.51.
(a) How many mL should infuse each hour?
(b) The current drip rate is set to 10 . gtts $/ \mathrm{min}$. Is this correct? If not, what is the correct drip rate?

Answers

Chapter 1 Matter, Energy, and Measurement

1.1 multiplication (a) 4.69×10^{5} (b) 2.8×10^{-15};
division (a) 2.00×10^{18} (b) 1.37×10^{5}
1.2 (a) $147^{\circ} \mathrm{F}$ (b) $8.3^{\circ} \mathrm{C}$
$1.3 \quad 13.8 \mathrm{~km}$
$1.4 \quad 743 \mathrm{mph}$
$1.5 \quad 1.3 \mathrm{mg} / \mathrm{min}$
$1.6 \quad 78.5 \mathrm{~g}$
$1.7 \quad 2.43 \mathrm{~g} / \mathrm{mL}$
$1.8 \quad 1.016 \mathrm{~g} / \mathrm{mL}$
$1.94 .8 \times 10^{3} \mathrm{cal}=48 \mathrm{kcal}$
$1.1046^{\circ} \mathrm{C}$
$1.11 \quad 0.0430 \mathrm{cal} / \mathrm{g} \cdot \mathrm{deg}$
1.13 (a) Matter is anything that has mass and takes up space. (b) Chemistry is the science that studies matter. 1.15 Dr. X's claim that the extract cured diabetes would be classified as (c) a hypothesis. No evidence had been provided to prove or disprove the claim.
1.17 (a) 3.51×10^{-1}
(b) 6.021×10^{2}
(c) 1.28×10^{-4}
(d) 6.28122×10^{5}
1.19 (a) 6.65×10^{17}
(b) 1.2×10^{1}
(c) 3.9×10^{-16}
(d) 3.5×10^{-23}
1.21 (a) 1.3×10^{5}
(b) 9.40×10^{4}
(c) $5.139 \times 10^{-}$
$1.23 \quad 4.45 \times 10^{6}$
1.25 (a) 2 (b) 5 (c) 5 (d) 5 (e) ambiguous, better to write as 3.21×10^{4} (three significant figures) or 32100 . (five significant figures) (f) 3 (g) 2
1.27
(a) 92
(b) 7.3
(c) 0.68
(d) 0.0032
(e) 5.9
1.29 (a) 1.53
(b) 2.2
(c) 0.00048
$1.31330 \mathrm{~min}=5.6 \mathrm{~h}$
1.33 (a) 20 mm (b) 1 inch (c) 1 mile
1.35 Weight would change slightly. Mass is independent of location, but weight is a force exerted by a body influenced by gravity. The influence of the Earth's gravity decreases with increasing distance from sea level.
1.37 (a) $77^{\circ} \mathrm{F}, 298 \mathrm{~K}$
(b) $104^{\circ} \mathrm{F}, 313 \mathrm{~K}$
(c) $482^{\circ} \mathrm{F}, 523 \mathrm{~K}$,
(d) $-459^{\circ} \mathrm{F}, 0 \mathrm{~K}$
1.39 (a) 0.0964 L (b) 27.5 cm (c) $4.57 \times 10^{4} \mathrm{~g}$ (d) 4.75 m
(e) 21.64 mL (f) $3.29 \times 10^{3} \mathrm{cc}$ (g) 44 mL (h) 0.711 kg
$\begin{array}{llll}\text { (i) } 63.7 \mathrm{cc} & \text { (j) } 7.3 \times 10^{4} \mathrm{mg} & \text { (k) } 8.34 \times 10^{4} \mathrm{~mm} & \text { (l) } 0.361 \mathrm{~g}\end{array}$
$1.41 \quad 512 \mathrm{fl} \mathrm{oz}$.
$1.4350 \mathrm{mi} / \mathrm{h}$
1.454 tablets
$1.47 \quad 16 \mathrm{mg}$
$1.4942 \mathrm{cc} / \mathrm{h}$
1.51420 min
1.53 solids and liquids
1.55 No, melting is a physical change.
1.57 bottom: manganese; top: sodium acetate; middle: calcium chloride
$1.59 \quad 0.8 \mathrm{~mL}$
1.61 water
1.63 One should raise the temperature of water to $4^{\circ} \mathrm{C}$.

During this temperature change, the density of the crystals decreases, while the density of water increases. This brings the less dense crystals to the surface of the more dense water.
1.65 The motion of the wheels of the car generates kinetic
energy, which is stored in your battery as potential energy.
$1.67 \quad 0.34 \mathrm{cal} / \mathrm{g} \cdot \mathrm{C}^{\circ}$
1.69334 mg
1.71 The body shivers. Further temperature lowering results in unconsciousness and then death.
1.73 Methanol, because its higher specific heat allows it to retain the heat longer.
$1.75 \quad 0.732$
1.77 kinetic: (b), (d), (e); potential: (a), (c)
1.79 the European car
1.81 kinetic energy
1.83 The largest is 41 g . The smallest is $4.1310 \times 10^{-8} \mathrm{~kg}$.
$1.85 \quad 10.9 \mathrm{~h}$
1.87 The heavy water. When converting the specific heat given in $\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$ to $\mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, one finds that the specific heat of heavy water is $1.008 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, which is somewhat greater than that of ordinary water.
1.89 (a) $1.57 \mathrm{~g} / \mathrm{mL}$ (b) $1.25 \mathrm{~g} / \mathrm{mL}$
1.91 two
1.9360 J would raise the temperature by $4.5^{\circ} \mathrm{C}$; thus, the final temperature will be $24.5^{\circ} \mathrm{C}$.
1.95 Number (b), 4.38, has three significant figures. Number (a), 0.00000001 , has only one significant figure. The zeros merely indicate the location of the decimal point.
1.97 To do this calculation, you need a conversion factor from kilometers to miles. Table 1.3 gives 1 mile $=1.609 \mathrm{~km}$.

$$
95 \mathrm{~km} \times \frac{1 \mathrm{mile}}{1.609 \mathrm{~km}} \sim 59 \mathrm{~km}
$$

If you use the other possible conversion factor:

$$
95 \mathrm{~km} \times \frac{1.609 \mathrm{~km}}{\mathrm{mi}} \sim \frac{153 \mathrm{~km}^{2}}{\mathrm{mi}}
$$

Both the numbers and the units are incorrect.
1.99 In photosynthesis, the radiant energy of sunlight is converted to chemical energy in the sugars produced.
1.101 Converting $30^{\circ} \mathrm{C}$ from the Celsius to Fahrenheit temperature scales gives $86^{\circ} \mathrm{F}$. You are most likely to be wearing a T-shirt and shorts.
1.103 Cells that have been exposed to several cycles of freezing and thawing will have expanded quite a bit. The expansion process tends to break open the cells to make their contents available for fractionation and further study. 1.105 We use the specific heat of water and the information that a liter of water weighs 1000 . grams.

$$
\begin{gathered}
\text { Amount of heat }=\mathrm{SH} \times \mathrm{m} \times\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) \\
\text { Amount of heat }=\frac{1.00 \mathrm{cal}}{\mathrm{gC}} \times 2.000 \mathrm{£} \times \frac{1000 . \text { grams }}{\mathrm{E}} \times 4.85 \mathrm{C}
\end{gathered}
$$

Amount of heat $=9.70 \times 10^{3}$ calories
1.107 Determining the amount of substance and its effectiveness can be done together. You separate the components of the original material and, in the process, determine its amount. One possible way is to weigh the amounts of recovered material. You would then test the substance to see whether the individual compound produces the predicted results.
$1.1094 .85 \times 10^{3}$ calories
1.111 (a) $20 . \mathrm{mL}$ (b) No; 5 gtts $/ \mathrm{min}$

This page contains answers for this chapter only

[^0]: *This statement is not completely true. As discussed in Sections 9.8 and 9.9, it is possible to convert matter to energy, and vice versa. Therefore, a more correct statement would be matter-energy can be neither created nor destroyed. However, the law of conservation of energy is valid for most purposes and is highly useful.

