1. A mineral has a mass of 50 g and a volume of $10 \mathrm{~cm}^{3}$. Calculate the density of this mineral.
2. Determine the density of the Block A below, which has a mass of 128 g and dimensions as shown in the diagram below.

($\mathrm{V}=\mathrm{L}$ X W X H)
3. Determine the mass of the Block B below, which has a density of $3 \mathrm{~g} / \mathrm{cm}^{3}$ and dimensions as shown in the diagram below.

4. Determine the density of the mineral sample shown below.

[^0]$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

DENSITY APPLICATION*

1. The diagram below shows a beaker filled with water. Three objects A, B \& C were placed in the beaker, which all appear to float on water.

HINTS:

- Although all 3 objects float on water, different portions of each object are exposed above water.
- What does that reveal about the density of each object as compared to each other?

Determine the object with the least density out of the three. \qquad
Justify your selection: \qquad
\qquad
2. The object below has a mass of 144 g and a volume of $72 \mathrm{~cm}^{3}$. If a student decides to cut the object in half, what would you anticipate the density of each half to be? Explain your answer (You may select to do this in writing or mathematically).

Objects's dimensions:
Length $=6 \mathrm{~cm}$
Height $=4 \mathrm{~cm}$
Width $=\mathbf{3 c m}$

[^0]: Density=

