Base your answers to the following questions on the diagram provided to you. The diagram represents the apparent paths of the Sun for the following dates: September $\mathbf{2 3}^{\text {rd }}$, December $\mathbf{2 1}{ }^{\text {st }}$, March $\mathbf{2 1}{ }^{\text {st }}$ and June $\mathbf{2 1}{ }^{\text {st }}$, for an observer located in New York State.

1. a) Identify the dates that each one of the Sun's paths represents. On the diagram, label each path with its date(s). (Hint: the two Equinoxes, March $\mathbf{2 1}^{\text {st }}$ \& September $\mathbf{2 3}^{\text {rd }}$ share the same path. For December $\mathbf{2 1}^{\text {st }}$ and June $\mathbf{2 1}^{\text {st }}$ think of the altitude of the Sun/angle of insolation or the duration of insolation/\# of hours of daylight previously learned).
b) Explain one way you were able to determine this.
2. In which direction, would the observer in the diagram have to look in order to see the sun at noon (when the Sun is at its highest position along any of its paths), for any of the above mentioned dates?

Dec. 21 path

3. From which specific direction does the sun appear to rise? \qquad To set? \qquad

Mar 21 \& Sep. 23 paths

4. From which specific direction does the sun appear to rise? \qquad To set? \qquad

June 21 path

5. From which specific direction does the sun appear to rise? \qquad To set? \qquad

Shadows

The higher the altitude of the Sun is, the shorter the shadow of an object will be, while the lower the altitude of the Sun is, the longer the shadow of an object will be.
6. Determine the path (date) for which an object would cast:
a) the longest shadow.
b) the shortest shadow. \qquad

APPARENT PATHS OF THE SUN*

7. Determine the approximate time of the day (select from sunrise, noon, sunset) when an object would cast:
a) the longest shadow.
b) the shortest shadow.

APPARENT PATHS OF THE SUN DIAGRAM

