APPARENT MOTION OF STARS (1)*

1) How many degrees, across the night sky, would the following stars appear to move in 2 hours? (Refer to page 1, before your answer this question).

a) the Sun:	0						
Explain your answer:				~			
				12		£	
b) Polaris:	0				ł		
Explain your answer:		 	 			2	

2) The following diagram represents a photograph of the trails of **6** different stars across the night sky. Determine the **number of hours** the camera lens was left open in order to capture these star trails. **Show** your work.

of hours=

APPARENT MOTION OF STARS (2)*

Directions: Look at the **four images** below, which display the <u>apparent motion of</u> <u>stars as viewed from **4 different geographic directions (North, South, East,** <u>West</u>). For each one of the photographs, <u>identify the direction</u> in which the <u>camera was facing</u>, when each photograph was taken. **Site evidence** for your selection. (**Refer to the <u>images</u> of the handout <u>"Apparent Motion Of Stars (1)"</u>)</u>**

	2					
Direction in which the camera was facing:	Direction in which the camera was facing:					
Evidence:	Evidence:					
	4					
Direction in which the camera was facing:	Direction in which the camera was facing:					
Evidence:	Evidence:					

APPARENT MOTION OF STARS (3)*

The two diagrams below represent the 2 models that tried to explain the motion of celestial objects. The one on the left is known as the Geocentric Model and it was originally proposed by Claudius Ptolemy, a Greek Philosopher/Astronomer, in the 2nd century A.D., while the one on the right is known as the Heliocentric Model, originally proposed by Copernicus, a Polish Astronomer, during the 16th century.

By citing evidence from the diagrams above, list 3 differences between the Geocentric and the Heliocentric models.

(1) Identify the object in the center/middle of each model.

- (2) Which motion is the Sun doing?
- (3) Which motion(s) is the Earth doing?